1 main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production (Based on works of extended Durham group) Studying.

Slides:



Advertisements
Similar presentations
Double proton tagging at the LHC UK HEP Forum, Coseners house 25th April 2004 Brian Cox Improved mass resolution Only 0 ++ (or 2 ++ ) systems produced.
Advertisements

1 Diffractive processes as a means to study new physics at the LHC VAK, ADM, WJS and G.W., visit. profs: A.De Roeck, A.Kaidalov, M.Ryskin + 6 young int.
1 Measurements of central exclusive processes at LHC Marek Taševský Institute of Physics, Academy of Sciences, Prague Blois conference - 02/
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
1 V.A. Khoze (IPPP, Durham & PNPI, St. Petersburg ) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages.
Discussion session : What can HERA still provide ? 9 April 2008 (based on works with A. Kaidalov, A. Martin and M. Ryskin ) V.A. Khoze (IPPP, Durham &
1 V.A. Khoze (IPPP, Durham & PINP) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages for probing.
Diffractive Higgs production at the LHC Alan Martin (Durham) 31 st John Hopkins Workshop Heidelberg, August 2007 H p p Prod. of Higgs in diff ve hadron-hadron.
1 V.A. Khoze ( IPPP, Durham ) A. Shuvaev & KMR arXiv: [hep-ph] Physics Backgrounds Revisited.
1 V.A. Khoze (IPPP, Durham) main aim: to show that the Central Diffractive Processes may provide an exceptionally clean environment to search for and to.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller U. & PNPI ) (Based on works of extended Durham group) main aims:
1 V.A. Khoze (IPPP, Durham & Manchester) main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production (Based on.
1  V.A. Khoze ( IPPP, Durham & PNPI ) (In collaboration with L. Harland-Lang, M. Ryskin and W.J. Stirling) Central Diffractive Processes at the Tevaron.
1  V.A. Khoze ( IPPP, Durham ) (In collaboration with L. Harland-Lang, M.Ryskin and W.J. Stirling) Standard Candles for Central Exclusive Processes at.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller Univ.) (Based on works of extended Durham group) main aims: to.
1 V.A. Khoze (IPPP, Durham) main aim: to show that the Central Exclusive Diffractive Processes may provide an exceptionally clean environment to study.
1 (based on works with A. Martin and M. Ryskin ) Early LHC Measurements to Check Predictions For Central Exclusive Production Higgs sector study- one of.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller U. & PNPI ) (Based on works of extended Durham group) main aims:
1 Forward Proton Tagging at the LHC as a Means to Search for New Physics V.A. Khoze (IPPP, Durham) main aims  to illustrate the theoretical motivations.
On the Trail of the Higgs Boson Meenakshi Narain.
1 V.A. Khoze (IPPP, Durham) (based on works with A. Kaidalov, M. Ryskin, A.D. Martin amd W.J. Stirling) Early LHC Measurements Aiming at Reducing Uncertainties.
1 V.A. Khoze (IPPP, Durham) Disclaimer : some of the results are (very) preliminary and should be taken only as a snapshot of the current understanding.
1 1  (based on works by V.Khoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of Heavy Quarkonia. (KRYSTHAL collaboration)
1 Forward Proton Tagging at the LHC as a Tool to Study New Physics V.A. Khoze (IPPP, Durham) main aims  to illustrate the theoretical motivations behind.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
Recent Results on Diffraction and Exclusive Production from CDF Christina Mesropian The Rockefeller University.
1 V.A. Khoze (IPPP, Durham & PINP) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages for probing.
1 1  V.A. Khoze ( IPPP, Durham ) (based on works by V.KHoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of Heavy.
1 V.A. Khoze (IPPP, Durham) (based on works with A. Kaidalov, M. Ryskin, A.D. Martin amd W.J. Stirling) Selected Topics on Central Exclusive Production.
1 1  V.A. Khoze ( IPPP, Durham & PNPI ) (based on works by V.Khoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of.
1 Heavy Quarkonia: as Seen through the Eyes of C entral E xclusive P roduction at the Tevatron and LHC  V.A. Khoze ( IPPP, Durham ) (Based on collaboration.
1 Forward Proton Tagging at the LHC as a Means to Search for New Physics V.A. Khoze (IPPP, Durham) main aims  to illustrate the theoretical motivations.
1 V.A. Khoze ( IPPP, Durham and PINP ) KHARYS (in collaboration with Lucian HArland-Lang and Misha RYSkin) Central Exclusive Processes at Hadron Colliders.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Higgs Properties Measurement based on HZZ*4l with ATLAS
17 April. 2005,APS meeting, Tampa,FloridaS. Bhattacharya 1 Satyaki Bhattacharya Beyond Standard Model Higgs Search at LHC.
Double proton tagging at 420m as a means to discover new physics Brian Cox The Future of Forward Physics at the LHC Dec 2004, Manchester glodwick.hep.man.ac.uk/conference.
1 Heavy Quarkonia: as Seen through the Eyes of C entral E xclusive P roduction at the Tevatron and LHC  (Based on collaboration with L. Harland-Lang,
1 V.A. Khoze ( IPPP, Durham ) Central exclusive production of heavy quarkonia and charmonium-like states (selected topics ) X.
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
1 V.A. Khoze (IPPP, Durham) (based on works with A. Kaidalov, M. Ryskin, A.D. Martin amd W.J. Stirling) Selected Topics on Central Exclusive Production.
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
Update of diffractive Higgs production at the LHC V.A. Khoze, A.D. Martin, M.G. Ryskin A.B. Kaidalov and W.J. Stirling DIS2006, Tsukuba, Japan th.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
The FP420 R&D Project Motivation from KMR calculations (e.g. hep-ph ) Selection rules mean that central system is (to a good approx) 0 ++ If you.
1 Heavy Quarkonia: as Seen through the Eyes of C entral E xclusive P roduction at the Tevatron and LHC  V.A. Khoze ( IPPP, Durham, PNPI ) (Based on works.
New Results From CMS Y.Onel University of Iowa A Topical Conference on elementary particles, astrophysics and cosmology Miami 2011, Dec 15-20, 2011 conference.
Central Exclusive Production at Hadron Colliders ( KRYSTHAL Collaboration ) V.A. Khoze ( IPPP, Durham and HIP& AFO, Helsinki ) (selected new results )
1 Higgs Production in the Forward Proton Mode Revisited V.A. Khoze ( IPPP, Durham ) (in collaboration with Lucian Harland-Lang, Misha Ryskin and Marek.
1 A Fresh Look at the Higgs Production in the Forward Proton Mode V.A. Khoze ( IPPP, Durham & PNPI ) (in collaboration with Lucian Harland-Lang and Misha.
QCD issues through the eyes of AFP220 (selected topics) V.A. Khoze (IPPP,Durham) (special thanks to Misha Ryskin and Andy Pilkington for discussions )
Diffractive Higgs production Kaidalov,Khoze,Martin,Ryskin,Stirling Introduction SM Higgs pp  p + H + p Calculation of bb bar background 0 + and 0 - Higgs.
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
Vanina Ruhlmann-Kleider DAPNIA/SPP (Saclay) V.Ruhlmann-KleiderPhysics at LHC, Praha Review of Higgs boson searches at LEP Introduction The SM Higgs.
1 V.A. Khoze ( IPPP, Durham ) Central exclusive production of heavy quarkonia and charmonium-like states (selected topics ) X.
Higgs Summary Alexei Raspereza On behalf of Higgs Working Group ECFA Workshop, Warsaw 12/06/2006 Outline  Current Status  Contributions in Warsaw  Theory.
1 News on Exclusive Production of the BSM Higgs bosons Marek Taševský Institute of Physics, Academy of Sciences, Prague (in collaboration with S. Heinemeyer,
Physics at the LHC M. Guchait DHEP Annual Meeting 7-8 th April, 2016.
Studying the BSM Higgs sector by forward proton tagging at the LHC
Electroweak Physics Lecture 6
and diphoton resonance production
PROSPECTS FOR FORWARD PHYSICS AT THE LHC
Central Exclusive Production of BSM Higgs bosons decaying to jets
Diffraction at LHC, Tevatron and HERA
Experimental Particle PhysicsPHYS6011 Performing an analysis Lecture 5
Single Diffractive Higgs Production at the LHC *
For theoretical audience For experimental audience
 MHV rule, (Super)Symmetries and ‘Diffractive Higgs’
Presentation transcript:

1 main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production (Based on works of extended Durham group) Studying the BSM Higgs sector by proton tagging at the LHC V.A. Khoze (IPPP, Durham & PINP) ( 27 th April)

2 1.Introduction (gluonic Aladdin’s lamp) 2. Central Exclusive Diffractive Production (only a taste). 3. Prospects for CED MSSM Higgs-boson production. 4. Other BSM scenarios. 5. Conclusion. PLAN Higgs boson

3 The main advantages of CED Higgs production Prospects for high accuracy (~1%) mass measurements (irrespectively of the decay mode). Quantum number filter/analyser. ( 0++ dominance ; C,P- even) H ->bb opens up ( Hbb- coupl. ) (gg) CED  bb in LO ; NLO,NNLO, b- mass effects – controllable. For some areas of the MSSM param. space CEDP may become a discovery channel ! H → WW*,  ( less challenging experimentally + smaller bgds., better PU cond. )  A handle on the overlap backgrounds- Fast Timing Detectors ( 10 ps timing or better ). New leverage –proton momentum correlations ( probes of QCD dynamics, CP- violation effects… )  LHC : ‘after discovery stage’, Higgs ID …… H How do we know what we’ve found? mass, spin, couplings to fermions and Gauge Bosons, invisible modes …  for all these purposes the CEDP will be particularly handy ! (Krzystof, Jim)

4 New CDF results (dijets, ,  c ) (Christina, Jim) not so long ago: between Scylla and Charibdis: orders of magnitude differences in the theoretical predictions are now a history  (CDPE) ~ 10  (incl) (Khoze-Martin-Ryskin )

5 “soft” scattering can easily destroy the gaps gap eikonal rescatt: between protons enhanced rescatt: involving intermediate partons H soft-hard factoriz n conserved broken Subject of hot discussions : S² S²  absorption effects -necessitated by unitarity (KKMR-01; BBKM-06; RMK-07-09, ….FHSW ;GLMM-07-09…. )

6 ‘ Well, it is a possible supposition.’ ‘You think so, too ?’ ‘I did not say a probable one ’ Far more theoretical papers than the expected number of the CED produced Higgs events

7 ☻ Up to now the diffractive production data are consistent with K(KMR)S results Still more work to be done to constrain the uncertainties. Exclusive high-Et dijets CDF : data up to (E t) min >35 GeV (Christina) ‘ Factorization breaking’ between the effective diffractive structure functions measured at the Tevatron and HERA. The ratio of high Et dijets in production with one and two rapidity gaps CDF results on exclusive charmonium CEDP, ( CDF, PRL ) (Jim) Energy dependence of the RG survival (D0, CDF). Central Diffractive Production of γγ (…. ,  ) ( CDF, PRL-07) (Jim) ( in line with the KMRS calculations) ( 3 candidates & more candidates in the new data ) Leading neutrons at HERA LET THE DATA TALK ! CURRENT EXPERIMENTAL CHECKS Only a large data set would allow to impose a restriction order on the theoretical models (PRD-2008)

8 d A killing blow to the wide range of theoretical models. Visualization of QCD Sudakov formfactor CDF PRD-2008 CDF (Christina)

9 CDF Collaboration, arXiv: [hep-ex] KMRS -2004: 130 nb 90 nb (PDG-2008) (role of higher spin states, NLO-effects, DD…. need further detailed studies )  /KK mode as a spin-parity analyzer (Jim, Christina)

10 Are the early LHC runs, without proton taggers, able to check estimates for pp  p+A+p ? Possible checks of: (i) survival factor S 2 : W+gaps, Z+gaps (ii) generalised gluon f g :  p   p (iii) Sudakov factor T :  3 central jets (iv) soft-hard factorisation #(A+gap) evts (enhanced absorptive corr n ) #(inclusive A) evts with A = W, dijet,  … gap KMR: Divide et Impera

11 MSSM without ‘clever hardware’: for H(SM)  bb at 60fb-1 only a handful of events due to severe exp. cuts and low efficiencies, though S/B~1. H->WW mode at M>135 GeV. ( B.Cox et al-06 )  enhanced trigger strategy & improved timing detectors ( FP420, TDR ) The backgrounds to the diffractive H bb mode are manageable! situation in the MSSM is very different from the SM Conventionally due to overwhelming QCD backgrounds, the direct measurement of Hbb is hopeless > SM-like

12 Myths For the channel bgds are well known and incorporated in the MCs: Exclusive LO - production (mass-suppressed) + gg misident+ soft & hard PP collisions. Reality The background calculations are still in progress : (uncomfortably & unusually large high-order QCD and b-quark mass effects). About a dozen various sources ( studied by Durham group )  admixture of |Jz|=2 production.  NLO radiative contributions (hard blob and screened gluons)  NNLO one-loop box diagram ( mass- unsuppressed, cut-non-reconstructible)  ‘Central inelastic’ backgrounds ( soft and hard Pomerons )  b-quark mass effects in dijet events ……….. some regions of the MSSM parameter space are especially proton tagging friendly (at large tan  and M, S/B ) KKMR-04 ; HKRSTW-07; B. Cox, F.Loebinger, A.Pilkington-07, C. Royon et al

13 The MSSM and more ‘ exotic ‘ scenarios If the coupling of the Higgs-like object to gluons is large, double proton tagging becomes very attractive The intense coupling regime of the MSSM (E.Boos et al, 02-03) CP-violating MSSM Higgs physics ( B.Cox et al. 03, KMR-03, J. Ellis et al. -05) Potentially of great importance for electroweak baryogenesis Triplet Higgs bosons (CHHKP-2009) Fourth Generation Higgs NMSSM (J. Gunion, et al.) Invisible’ Higgs (BKMR-04) There is NO experimental preference for a SM Higgs. Any Higgs-like boson is very welcome !

14

15 Four integrated luminosity scenarios (bb, WW,  - modes studied ) 1. L = 60fb -1 : 30 (ATLAS) + 30 (CMS): 3 yrs with L=10 33 cm -2 s L = 60fb -1, effx2: as 1, but assuming doubled exper.(theor.) eff. 3. L = 600fb -1 : 300 (ATLAS) (CMS) : 3 yrs with L=10 34 cm -2 s L = 600fb -1,effx2: as 3, but assuming doubled exper.(theor.) eff. We have to be open-minded about the theoretical uncertainties. Should be constrained by the early LHC measurements (KMR-08) upmost ! (S.Heinemeyer, VAK, M.Ryskin, W.J.Stirling, M.Tasevsky and G.Weiglein- 07,08)

16 New Tevatron data still pouring

17

18 NEW DEVELOPMENT Current Tevatron limits implemented. CDM scenarios analysed 4 Generation scenarios Neutral Higgs in the triplet model (CHHKP-09) Still to come  - mode, in particular, trigger strategy Charged Higgs bosons in MSSM and triplet models Compliant with the Cold Dark Matter and EW bounds (S.Heinemeyer, VAK, M.Ryskin, W.J.Stirling, M.Tasevsky and G.Weiglein 07-08) bb backgrounds revisited (Shuvaev +KMR)

19 Mhmax benchmark scenario Improved theory & background 3  contours  “600 X 2” scenario covers nearly the whole allowed region for the light Higgs. For large tan  heavy Higgs reach goes beyond 235 GeV.  For the H-boson the area reachable in the “60”-scenario is to large extent ruled out by the Tevatron data. HKRTW-08  Tevatron limits shown.  Updated theory calculations  New bb-backgrounds

20 CDM benchmarks  Updated theory calculation for signal & background 3  contours P3- NUHM scenario LEP limit TEVATRON HKRTW-08 Abundance of the lightest neutralinio in the early universe compatible with the CDM constraints as measured by WMAP. The M A – tan  planes are in agreement with the EW and B-physics constraints

21 5  -discovery, P3- NUHM scenario 3  -contours, P4- NUHM scenario

22 MSSM SUMMARY MSSM SUMMARY

23 M. Chaichian, P.Hoyer, K.Huitu, VAK, A.Pilkington, JHEP (in print) An additional bonus: doubly charged Higgs in photon-photon collisions  factor of 16 enhancement

24 Simulation by A. Pilkington Expected mass distributions given 60 fb-1 of data. 3.9  11.9  12.7  4.5 

25 at 220 GeV: CED (HWW/ZZ) rate – factor of ~9; at 120 GeV CED (Hbb) rate – factor of ~5. HZZ – especially beneficial at M= GeV Simplest example of the BSM Higgs physics Enhancement of  (Hgg)  B(H  ) is suppressed

26 CDF & D0 At 60 fb-1 : for M=120 GeV, ~25 bb ev; for M=220 GeV, ~ 50 WW ev; favourable bgs L (fb -1 ) Stat. Sign * *2 15.7

27 CONCLUSION Forward Proton Tagging would significantly extend the physics reach of the ATLAS and CMS detectors by giving access to a wide range of exciting new physics channels. FPT has the potential to make measurements which are unique at LHC and challenging even at a ILC. For certain BSM scenarios the FPT may be the Higgs discovery channel.. God Loves Forward Protons Strongly suppressed QCD backgrounds in the forward proton mode provide a potential for direct determination of the Hbb Yukawa coupling, for probing CP properties and for measuring Higgs mass and width.