冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Creating new states of matter:
Quantum Theory of Collective Atomic Recoil in Ring Cavities
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
18th International IUPAP Conference on Few-Body Problems in Physics Santos – SP – Brasil - Agosto Global variables to describe the thermodynamics.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
The Bose-Einstein Condensate Jim Fung Phys 4D Jim Fung Phys 4D.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
Bose-Einstein Condensates Brian Krausz Apr. 19 th, 2005.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Collective modes of a trapped strongly interacting Fermi gas near the unitary limit regime 陆振帮 华中师范大学粒子物理研究所 (IOPP, CCNU) 武汉科技学院理学院 (WUSE) 合肥 2009.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Lecture 25. Bose-Einstein Condensation (Ch. 7 )
Guillermina Ramirez San Juan
Angular correlation in a speckle pattern of cold atomic clouds Eilat 2006 Ohad Assaf and Eric Akkermans Technion – Israel Institute of Technology.
玻色-愛因斯坦凝聚態之數學問題 吳宗芳 國立高雄大學應用數學系.
JILA June ‘95. BEC in external Potetnial V. Bagnato et al. Phys.Rev. 35, p4354 (1987) free space potential.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Bose Einstein Condensation Condensed Matter II –Spring 2007 Davi Ortega In Diluted Gas.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Lectures on Quantum Gases Lectures G. Shlyapnikov 2015 年 6 月 10, 17, 25, 30 日, 下午 3:30-5:00 频标楼 4 楼报告厅 About the speaker : Director of Research at CNRS,
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Bose-Einstein Condensation
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
An Ultra cold Analogue of Semiconductor Devices and Circuits Submitted by Sushant Rawat ECE Roll no
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Cold Gases Meet Condensed Matter Physics Cold Gases Meet Condensed Matter Physics C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure & UPMC,
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Anderson localization of weakly interacting bosons
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Mysterious Damping Action Explained
Presentation transcript:

冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心

Introduction Works on the Degenerate Bose Gas Cooling, Trapping, and Manipulating Tools BEC Behavior Remarks on the Current BEC Experiments and Future Directions Outline

Introduction Brief History of Bose-Einstein condensation (BEC) Special Features of Dilute Bose condensates (Why dilute is important?)

Goal to achieve? Momentum space p: Cooling: lower T → larger d Coordinate(Position) space r: Trapping: increase n → smaller d spatial density Phase Space!! n phase ≧ 1 !!

Works on the Degenerate Bose Gas Weakly Interacting Bose Gas Feshbach Resonance ( a knob tuning the interactions!!) Low Dimension Strongly Correlated Boson Systems Mott Insulator Quantum Entanglement Phase fluctuations Tonks Gas Superfluidity Vortices Excitation Superfluidity Vortices Excitation Coherence Interference Atom Laser Cold Molecules Nonlinearity Multi- Species

Cooling, Trapping, and Manipulating Tools Tools: Electric and magnetic fields (DC and AC ) EM waves – photons (visible, IR, microwave …) Systems: Atomic ensembles (atom number: 10 3 – 10 9 ) Macroscopic size: 5 – 500  m Ultrahigh vacuum environment (very little impurities) Ultralow temperatures (  1  K) No physical wall Quiet and almost no defect potentials (as in the texbooks) are possible

Magnetic Traps not all the states are Trappable!! Please see the other file!

Optical Dipole Trap |E 0 (x)| 2 x F(x) z x x |E 0 (x)| 2 F(x) z x “scattering force” “dipole force” near resonance light! far-detuned light light!

BEC Behavior Starting from the Gross-Pitaevskii equation!!

“internal energy” or “mean field energy”

Time-Evolution of a Wavefunction in Free Space

Thomas-Fermi Regime N BEC > 10 5 atoms  Thomas-Fermi regime kinetic energy << internal energy Cloud shape  inverted paraboloid neglected! Kanstanz, 1998

Phase transition (Lambda Point) JILA, 1996 condensate fraction energy per particle (Bose gas)

Remarks on the Current BEC Experiments and Future Directions

Collective Mode Excitations JILA, 1996

Sound Propagation MIT, 1997

Superfluidity and Vortices MIT, 2000 critical velocity in a superfluid MIT, 2002 Votex lattice condensate laser beam (a line-like excitation)

Skyrmions in a Multicomponent BEC - point-like excitation Utrecht, 2001 NOT YET realized experimentally!!

Two-Component Condensates JILA, 1997

Spinor Condensates MIT, 1999

Coherence and Correlation 1st order correlation MIT, rd order correlation JILA, 1997 interference between two condensates three-body recombination rate

Superradiant Rayleigh Scattering MIT, 1999

Matter Wave Amplification NIST, 1999

Nonlinear Atom Optics - Four Wave Mixing NIST, 1999

Bright Solitons Rice, 2002 Dark solitons were also observed! (NIST, 1999)

Fechbach Resonaces - a tuning tool for atom-atom interaction MIT, 1998

Optical Lattices 

Quantum Phase Transition 超流態轉變為非超流態 (Mott 絕緣態 ) 之量子相變 Max-Planck Institute, 2002

Quantum Entanglement (proposed idea) (b) (a) x01x01 x02x02 xb2(t)xb2(t) xa2(t)xa2(t)xb1(t)xb1(t) xa1(t)xa1(t) 簡易之二位元量子邏輯閘 (two-qubit logic gate) Innsbruck, 1999 凝聚體原子於光晶格中進行 量子糾纏 (quantum entanglement)

Low Dimension Atom Traps 1D traps: large aspect ratio in one direction with the other two optical dipole trap and magnetic Ioffe traps are available 2D (surface) Traps: optical dipole trap and magnetic traps are available too

Phase Fluctuations (1D trap) Orsay, 2003 Bragg spectroscopy in momentum space Hannover, 2001 stripes on1D traps (different aspect ratios)

Unexpected New Physics!!