Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots

Slides:



Advertisements
Similar presentations
Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
Advertisements

Kondo Physics from a Quantum Information Perspective
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
1 Molecular electronics: a new challenge for O(N) methods Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Superconductivity in Zigzag CuO Chains
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy  Nanowire growth and properties.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Introduction to the Kondo Effect in Mesoscopic Systems.
Kondo Effects in Carbon Nanotubes
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Quantum Dots – Past, Present and Open Questions Yigal Meir Department of Physics & The Ilse Katz Center for Meso- and Nano-scale Science and Technology.
Theory of the Quantum Mirage*
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Numerical study of transport properties of carbon nanotubes Dhanashree Godbole Brian Thomas Summer Materials Research Training Oakland University 2006.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
Magnetopolaronic effects in single-molecule transistor
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Spin scattering by organic radicals P. LeClair Physics.
NEGF Method: Capabilities and Challenges
Electron coherence in the presence of magnetic impurities
Electrons in Solids Carbon as Example
G. S. Diniz and S. E. Ulloa Spin-orbit coupling and electronic transport in carbon nanotubes in external fields Department of Physics and Astronomy, Ohio.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Chung-Hou Chung Collaborators:
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Application of the Cluster Embedding Method to Transport Through Anderson Impurities George Martins Carlos Busser Physics Department Oakland University.
2003/8/18ISSP Int. Summer School Interaction effects in a transport through a point contact Collaborators A. Khaetskii (Univ. Basel) Y. Hirayama (NTT)
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Physics Department, Beijing Normal University
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Singlet-Triplet and Doublet-Doublet Kondo Effect
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Bulk Hybridization Gap and Surface Conduction in the Kondo Insulator SmB 6 Richard L. Greene, University of Maryland College Park, DMR Recently,
THE KONDO EFFECT IN CARBON NANOTUBES
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Dirac’s inspiration in the search for topological insulators
Igor Lukyanchuk Amiens University
Orbitally phase coherent spintronics
Single-molecule transistors: many-body physics and possible applications Douglas Natelson, Rice University, DMR (a) Transistors are semiconductor.
Lecture 7 DFT Applications
Gauge structure and effective dynamics in semiconductor energy bands
4.8 – NOTES Intro to Electron Configurations
Low energy approach for the SU(N) Kondo model
Spin Switching in Single Wall Carbon Nanotubes Quantized Conduction Resolved Objective: Long coherence lengths in SWCNTs offer unique opportunities for.
Presentation transcript:

Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots

‘Simple’ and controllable systems can be obtained in nanostructured materials. => quantum coherent electronics => fundamental quantum phenomena (spintronics, quantum computation, superconducting electronics…) (quantum coherent dynamics, entanglement, strongly correlated systems,…)

|  |  Spin ½ Kondo

|  |  Spin ½ Kondo T K ~ 10 K T K ~ 1 K Nygard et al., Nature (2000) Liang et al. & J. Park et al. Nature (2002) T K ~ K Goldhaber-Gordon et al., Nature (1998) Cronenwett et al., Science (1998) Schmid et al., Physica B (1998) Semiconductor dots Carbon nanotube dots Single-molecule dots

In a metal with magnetic impurties: In a quantum dot with spin 1/2  |  |  Spin ½ Kondo TKTK

|  |  Spin ½ Kondo Gate-voltage control: => Kondo effect in the unitary limit (G → 2e 2 /h) [Nature 405, 764 (2000)] [Science 289, 2105 (2000)] Magnetic-field control: => integer-spin Kondo effect at singlet-triplet degeneracy [ Phys. Rev. Lett. 88, (2002)] Bias-voltage control: [Phys. Rev. Lett. 89, (2002)] => Kondo effect out of equilibrium

+ + |  |  |+  |  + Spin ½ Kondo Orbital Kondo

|+,  |+,  | ,  | ,  |  |  |+  |  + Spin ½ Kondo  Orbital Kondo = SU(4) Kondo L. Borda et al., Phys. Rev. Lett. (2003). G. Zaránd et al., Solid State Comm. (2003). Theory proposals in 2DEG QDs Experiments in 2DEG QDs S. Sasaki et al., Phys. Rev. Lett. (2004)

k || E (k || ) ()() ()()   v   v Periodic boundary conditions:  Quantized momentum around circumference  One-dimensional subbands Orbital magnetic moment

Finite length L  discrete spectrum: 4-fold shell structure at B=0 (orbital+spin degeneracy) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) ()() ()() Nanotube quantum dot Gate V VGVG I SWNT   v   v

Orbital splitting k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) ()() ()() B  0 Nanotube quantum dot Gate V VGVG I SWNT   v   v B B Prediction: Ajiki & Ando, J. Phys. Soc. Jpn (1993) discrete spectrum: 4-fold is lifted at B  0 (orbital splitting >> spin splitting) [Phys. Rev. Lett. 94, (2005)]

Kondo effect in a NT QD with 4-fold shell structure  Four-fold shell structure at B=0  Each shell has two orbitals with opposite orbital magnetic moment  Orbitals in different shells cross each other at high B B E |+,  | ,  | ,  |+,  gB0gB0 |+, > | , > |+, > B = 0 |+, > | , > |+, > B = B 0 gB0gB0 Intra-shell 4-fold degeneracy Inter-shell 2-fold degeneracy SU(4) Kondo Orbital Kondo [Nature 434, 484 (2005)]

B (T) n = 3n = 2 n = 1 half of 1st SHELL 2nd SHELL 3rd SHELL Linear conductance of a small-band-gap CNT QD V G (V) T=8K U U+ 

B (T)   v   v  orb  0.8 meV/T (>>  B = 0.06 meV/T) Consistent with theoretical predictions (Ajiki&Ando J.Phys.Soc. Jpn (1993)) and with recent experiments: Minot et al., Nature (2004); Zaric et al., Science (2004); Coskun et al., ibid. Orbital magnetic moment V G (V)

Orbital magnetic moment Colour scale x V g (mV) B (T) E. Minot et al. Nature 428, 536 (2004) V sd (mV) 0 V g (V) G (e 2 /h)  No 4-fold degeneracy  No link between spectrum & B-evolution of QD states They measured large orbital magnetic moments  orb = Dev F /4 ~ 0.7meV/T ~ 12  B Problems: Small band gap semic. nanotube

B (T)   v   v  orb  0.8 meV/T (>>  B = 0.06 meV/T) Consistent with theoretical predictions (Ajiki&Ando J.Phys.Soc. Jpn (1993)) and with recent experiments: Minot et al., Nature (2004); Zaric et al., Science (2004); Coskun et al., ibid. Orbital magnetic moment V G (V)

B(T) x20 IV I II III IV I II A BC D E F B1B1 C1C1 C2C2 D1D1 D2D2 E1E1 E2E2 F1F1 F2F2 G1G1 A’A’ B’B’ C’C’ D’D’ E’E’ F’F’ 0 1/ V G (V) 2.5 QD orbital & spin configuration k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3) k || E (k || ) E  (1) E  (2) E  (3) E  (1) E  (2) E  (3)

B(T) x20 IV I II III IV I II A BC D E F B1B1 C1C1 C2C2 D1D1 D2D2 E1E1 E2E2 F1F1 F2F2 G1G1 A’A’ B’B’ C’C’ D’D’ E’E’ F’F’ 0 1/ V G (V) 2.5 QD orbital & spin configuration B E

(AA ’ ): (CC ’ ): (DD ’ ): (EE ’ ): (FF ’ ): AA ’ (BB ’ ): BB 1 B1B’B1B’, CC 1 C2C’C2C’, C1C2C1C2,, DD 1 D2D’D2D’, D1D2D1D2, EE 1 E2E’E2E’, E1E2E1E2, FF 1 F2F’F2F’, F1F2F1F2 –  orb (2) – – g  B 1 2  orb (2) – – g  B 1 2 –  orb (2) + – g  B  orb (2) – – g  B 1 2 –  orb (1) – – g  B 1 2  orb (2) + – g  B 1 2 –  orb (1) – – g  B 1 2  orb (2) – – g  B 1 2 –  orb (1) – – g  B 1 2  orb (2) + – g  B 1 2 –  orb (1) + – g  B 1 2  orb (1) – – g  B 1 2 –  orb (1) + – g  B 1 2  orb (2) + – g  B 1 2 E  (3) E  (2) E  (1) E + (3) E + (2) E + (1) E B +,1 +,2 +,3 ,3 ,2 ,1     [Phys. Rev. Lett. 94, (2005)]

3 electrons 1 electron B(T) x20 IV I II III IV I II A BC D E F B1B1 C1C1 C2C2 D1D1 D2D2 E1E1 E2E2 F1F1 F2F2 G1G1 A’A’ B’B’ C’C’ D’D’ E’E’ F’F’ 0 1/ V G (V) 2.5 QD orbital & spin configuration B E Orbital crossing at B=3T

Orbital Kondo Effect V G (V) B (T) /2 III II IV I II III B = B 0  6T Orbital flip B E |+,  | ,  | ,  |+,  gB0gB0

B BB | ,  |+,  |+,  | ,  E B0B0 Orbital Kondo Effect B E |+,  | ,  | ,  |+,  gB0gB V G (V) B (T) /2 III II IV I II III B = B 0  6T Orbital flip at eV=  B B = B 0  6T 2gB02gB0 2B2B 2gB02gB0 2B2B

Low-impedance bipolar spin filter B VGVG I II III IV I II III Switch V G  switch filter polarity Orbital Kondo effect  low impedance

B(T) IV I II III IV I II G1G1 0 1/ V G (V) 2.5 Orbital+Spin Degeneracy => Strong Kondo (multilevel) V (mV) B = 0T I II III 0 IV V G (V)  Strong Kondo effect for 1 and 3 electrons in the shell  Strong triplet-singlet inelastic cotunneling peaks for 2 electrons in the shell [S. Sasaki, S. DF et al. Nature (2000)]

V (mV) V (mV) V G (V) B = 0T B = 1.5T I II III 0 IV Multiple finite B ! The Kondo resonance for 1 electron splits in 4 peaks

V (mV) B (T) Four-fold splitting  SU(4)-Kondo Zeeman splitting Orbital splitting [Theory: Choi, Lopez and Aguado, cond-mat/ ] I B dI/dV V

V G (V) V (mV) Inelastic cotunneling spectroscopy [PRL 86, 878 (2001)] Step in dI/dV at V=level spacing EE eV= +  E eV= -  E B (T) V (mV) B=0.7T dI/dV (e 2 /h) V (mV) dI/dV (e 2 /h) B=80mT 0123 B (T) 2gBB2gBB gBBgBB  4  orb B Zeeman, orbital, orbital + Zeeman

References Pablo Jarillo-Herrero Jing Kong Herre van der Zant Cees Dekker Leo Kouwenhoven Orbital Kondo effect [Nature 434, 484 (2005)] Magneto-transport spectroscopy [Phys. Rev. Lett. 94, (2005)] Collaborators