EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.

Slides:



Advertisements
Similar presentations
Transport Layer3-1 Transport Overview and UDP. Transport Layer3-2 Goals r Understand transport services m Multiplexing and Demultiplexing m Reliable data.
Advertisements

Transportation Layer (2). TCP full duplex data: – bi-directional data flow in same connection – MSS: maximum segment size connection-oriented: – handshaking.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
CS 471/571 Transport Layer 5 Slides from Kurose and Ross.
CSE551: Computer Network Review r Network Layers r TCP/UDP r IP.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
CSci4211: Transport Layer:Part I1 Transport Layer: Part I  Transport Layer Services  connection-oriented vs. connectionless  multiplexing and demultplexing.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Computer Networks 2 Lecture 2 TCP – I - Transport Protocols: TCP Segments, Flow control and Connection Setup.
Transport Layer peterl. Transport level application transport network data link physical logical end-end transport application transport network data.
CPSC 441: Intro, UDP1 Transport Layer Instructor: Carey Williamson Office: ICT Class Location:
Computer Communication Digital Communication in the Modern World Transport Layer Multiplexing, UDP
Chapter 3: Transport Layer
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Lecture 8 Chapter 3 Transport Layer
Chapter 3 Transport Layer
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 8 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
CPSC 441: Intro, UDP1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Ch. 7 : Internet Transport Protocols. Transport Layer Our goals: r understand principles behind transport layer services: m Multiplexing / demultiplexing.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP.
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Review: –What is AS? –What is the routing algorithm in BGP? –How does it work? –Where is “policy” reflected in BGP (policy based routing)? –Give examples.
CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5 th Edition) Tracy Bradley Maples, Ph.D. Computer.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 12 Omar Meqdadi Department of Computer Science and Software Engineering University.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network LayerII-1 RSC Part III: Transport Layer 1. Basic Concepts Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
Transport Layer and UDP Tahir Azim Ref:
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
Chapter 3 Transport Layer
Fall 2005 By: H. Veisi Computer networks course Olum-fonoon Babol Chapter 6 The Transport Layer.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Ram Dantu (compiled from various text books)
CSE679: Computer Network Review r Review of the uncounted quiz r Computer network review.
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
1 End-to-End Protocols (UDP, TCP, Connection Management)
Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
2: Transport Layer 11 Transport Layer 1. 2: Transport Layer 12 Part 2: Transport Layer Chapter goals: r understand principles behind transport layer services:
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
09-Transport Layer: TCP Transport Layer.
Chapter 3 outline 3.1 Transport-layer services
CS 1652 Jack Lange University of Pittsburgh
September 19th, 2013 CS1652 Jack Lange University of Pittsburgh
Chapter 5 Transport Layer Introduction
Transport Protocols: TCP Segments, Flow control and Connection Setup
Chapter 5 Transport Layer Introduction
Transport Protocols: TCP Segments, Flow control and Connection Setup
Transport Layer Our goals:
Chapter 3 Transport Layer
Presentation transcript:

EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer Networking book, and on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall)

2 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao Outline UDP TCP –Segment header structure –Connection management

3 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao UDP: User Datagram Protocol “No frills,” “bare bones” Internet transport protocol “Best effort” service, UDP segments may be: –Lost –Delivered out of order to app Connectionless: –No handshaking between UDP sender, receiver –Each UDP segment handled independently of others

4 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao Why is There a UDP? No connection establishment (which can add delay) Simple: no connection state at sender receiver Small segment header No congestion control: UDP can blast away as fast as desired

5 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao UDP Often used for streaming multimedia apps –Loss tolerant –Rate sensitive Other UDP uses –DNS –SNMP Reliable transfer over UDP: add reliability at application layer source port # dest port # 32 bits Application data (message) UDP segment format length checksum Length, in bytes of UDP segment, including header

6 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao UDP Checksum Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1’s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: –NO - error detected –YES - no error detected. But maybe errors nonetheless? Goal: detect “errors” (e.g., flipped bits) in transmitted segment

7 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao Internet Checksum Example When adding numbers, a carryout from the most significant bit needs to be added to the result Example: add two 16-bit integers wraparound sum checksum To know more:

8 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP: Overview Full duplex data: –Bi-directional data flow in same connection –MSS: maximum segment size Connection-oriented: –Handshaking (exchange of control msgs) init’s sender, receiver state before data exchange Flow controlled: –Sender will not overwhelm receiver Point-to-point: –One sender, one receiver Reliable, in-order byte steam: –No “message boundaries” Pipelined: –TCP congestion and flow control set window size Send & receive buffers

9 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP: Overview TCP connection is byte stream, not message stream, no message boundaries TCP may send immediately or buffer before sending Receiver stores the received bytes in a buffer

10 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Segment Structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F SR PAU head len not used Options (variable length) URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) # bytes rcvr willing to accept counting by bytes of data (not segments!) Internet checksum (as in UDP) A TCP segment must fit into an IP datagram!

11 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao The TCP Segment Header Source port and destination port: identify local end points of the connection –Source and destination end points together identify the connection Sequence number: identify the byte in the stream of data that the first byte of data in this segment represents Acknowledgement number: the next sequence number that the sender of the ack expects to receive –Ack # = Last received seq num + 1 –Ack is accumulative: an ack of 5 means 0-4 bytes have been received TCP header length – number of 32-bit words in header

12 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao The TCP Segment Header URG – indicates urgent pointer field is set Urgent pointer – points to the seq num of the last byte in a sequence of urgent data ACK – acknowledgement number is valid SYN – used to establish a connection –Connection request: ACK = 0, SYN = 1 –Connection confirm: ACK=1, SYN = 1 FIN – release a connection, sender has no more data RST – reset a connection that is confused PSH – sender asked to send data immediately

13 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao The TCP Segment Header Receiver window size – number of bytes that may be sent beyond the byte acked Checksum – add the header, the data, and the conceptual pseudoheader as 16-bit words, take 1 ’ s complement of sum –For more info: Options – provides a way to add extra facilities not covered by the regular header –E.g., communicate buffer sizes during set up

14 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Sequence Numbers and ACKs Sequence numbers: –byte stream “number” of first byte in segment’s data ACKs: –seq # of next byte expected from other side –cumulative ACK Host A Host B Seq=42, ACK=79, data = ‘C’ Seq=79, ACK=43, data = ‘C’ Seq=43, ACK=80 User types ‘C’ host ACKs receipt of echoed ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ time simple telnet scenario

15 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Connection Management TCP sender, receiver establish “connection” before exchanging data segments Initialize TCP variables: –Sequence numbers –Buffers, flow control info (e.g. RcvWindow ) Client: connection initiator Socket clientSocket = new Socket("hostname","port number"); Server: contacted by client Socket connectionSocket = welcomeSocket.accept();

16 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Connection Management Three way handshake: Step 1: client host sends TCP SYN segment to server –specifies initial sequence number –no data Step 2: server host receives SYN, replies with SYN/ACK segment –server allocates buffers –specifies server initial sequence number Step 3: client receives SYN/ACK, replies with ACK segment, which may contain data

17 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Connection Management Three way handshake: SYN segment is considered as 1 byte SYN/ACK segment is also considered as 1 byte client SYN (seq=x) server SYN/ACK (seq=y, ACK=x+1) ACK (seq=x+1, ACK=y+1) connect accept

18 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Connection Management Closing a connection: client closes socket: clientSocket.close(); Step 1: client end system sends TCP FIN control segment to server Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN. client FIN server ACK FIN close closed timed wait

19 Spring Semester 2007EEC-484/584: Computer NetworksWenbing Zhao TCP Connection Management Step 3: client receives FIN, replies with ACK. –Enters “timed wait” - will respond with ACK to received FINs Step 4: server, receives ACK. Connection closed. Note: with small modification, can handle simultaneous FINs client FIN server ACK FIN closing closed timed wait closed