EMT 212 ANALOG ELECTRONICS Professor Robert T Kennedy.

Slides:



Advertisements
Similar presentations
Analysis and Design of CMOS Analog Building Blocks
Advertisements

Chapter 3 Feedback Amplifiers
RANGAKAIAN DIODA Hamzah Afandi, Antonius Irianto dan Betty Savitri Sources: Millman, Jacob, Grabel, Arvin, Microelectronics, Mc. Graw Hill Int. Ed., 1994.
Instrumentation Amplifier: Active Bridge VoVo -+-+ RFRF R5R5 V1V1 V2V2 R’5R’F RLRL V1V1 V2V2 R4 =R R3 =R R2 =R R1 =R + ΔR Vre f T° Instrumentation.
Summing Amplifier -+-+ RFRF R4R4 + IFIF I4I4 VoVo R3R3 + I3I3 V3V3 V4V4 R2R2 + I2I2 V2V2 R1R1 + I1I1 V1V1 RLRL V id.
ECE201 Lect-161 Operational Amplifiers ( ) Dr. Holbert April 3, 2006.
ECEN 301Discussion #18 – Operational Amplifiers1 Give to Receive Alma 34:28 28 And now behold, my beloved brethren, I say unto you, do not suppose that.
Operational Amplifiers
ECEN 301Discussion #17 – Operational Amplifiers1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 29 OctWed17Operational Amplifiers8.1 – 8.2.
Op-Amp With Complex Impedance -+-+ Z1Z1 Vin ZLZL ZFZF VoVo A v = - (Z F /Z 1 ) “-” : 180° phase shift Z = a ± j b Z = M
Lecture 91 Loop Analysis (3.2) Circuits with Op-Amps (3.3) Prof. Phillips February 19, 2003.
Week 6aEECS40, Spring 2005 Week 6a OUTLINE Op-Amp circuits continued: examples Inverting amplifier circuit Summing amplifier circuit Non-inverting amplifier.
Experiment # 8 EE 312 & 352 Introductory Electronics Laboratory November 1, 1999 InputFilterRegulationLoad.
EE40 Lec 20 MOS Circuits Reading: Chap. 12 of Hambley
Op Amps Lecture 30.
ECE201 Lect-51  -Y Transformation (2.7); Circuits with Dependent Sources (2.8) Prof. Phillips February 3, 2003.
ECE201 Lect-81  -Y Transformation (2.7); Circuits with Dependent Sources (2.8) Dr. Holbert February 13, 2006.
Summer, 2003 Dr. H. Kaufman Consider the inverter shown in the Figure. A capacitor C = 10pF is connected between the output and ground. Let V DD = 5V,
Lecture 241 Circuits with Dependent Sources Strategy: Apply KVL and KCL, treating dependent source(s) as independent sources. Determine the relationship.
Operational Amplifiers
The Ideal Op-amp (Operational amplifier) + – v+v+ v–v– V OUT + – + – V IN V OUT V IN [μV] V OUT [V] +15V –15V V OUT =A(v + –v – ) A~10 5 saturation.
Content Op-amp Application Introduction Inverting Amplifier
Electronic Devices Ninth Edition Floyd Chapter 13.
ANALOGUE ELECTRONICS I
“Op-Amp” Operational Amplifier Non Inverting Amplifier Inverting Amplifier Adder –(and Subtractor using an Inverter) Differential Amplifier Integrator.
12.5 Common Source Amplifiers
ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION CHARACTERISTICS CONFIGURATIONS.
Inverting Amplifier Under stable linear operation – A OL = ∞, R in = ∞ – V o = A OL (V in(+) – V in(-) ) – V id = (V in(+) – V in(-) ) = V o /A OL = 0.
Analogue Electronics II EMT 212/4
Ideal Op-Amp Input impedance of op-amp is ∞ – No current flow in or out of input terminals Output impedance of op-amp (with respect to ground) is ‘0’ –
Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal, INDIA Subject Code : ECE – 101/102 BASIC ELECTRONICS.
Comparing two ways to find loop gain in feedback circuits Rob Fox University of Florida.
What is an Op Amp? Ideal Op Amps Applications Examples Lecture 9. Op Amps I 1.
Disclaimer: This review is based on clicker questions that directly relate to the lectures. The exam will also contain materials from the labs and pre-labs.
1 ANALOG ELECTRONICS II Frequency Compensation  the technique of modifying open-loop gain  the purpose is to ensure that op-amp circuits will be stable.
EMT 212 ANALOG ELECTRONICS Professor Robert T Kennedy.
ANALOG ELECTRONIC CIRCUITS 1
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
Mixed Signal Chip Design Lab Operational Amplifier Configurations Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania.
1 Analogue Electronic 2 EMT 212 Chapter 2 Op-Amp Applications and Frequency Response By En. Tulus Ikhsan Nasution.
Ideal Op Amps Z in =  –Implies zero input current Z out = 0 (without feedback) –Implies a perfect voltage source Differential voltage gain G diff = 
DC Power supply DC V out RLRL AC ~ 110V ±10% 60 Hz.
Chapter 30 Operational Amplifiers. 2 Introduction Characteristics –High input impedance –Low output impedance –High open-loop gain –Two inputs –One output.
Digital Electronics and Computer Interfacing Tim Mewes 5. Computer Interfacing – DAQ cards.
Designing for Predictable Amplifier Gain Gain is hard to control Varies with operating point Non-constant gain causes distortion Gain varies from one transistor.
1 Amplifiers. Equivalent Circuit of a Voltage Amplifier G vo V i IoIo RoRo VoVo ViVi RiRi IiIi Amplifier ViVi VoVo (a) Black Box Representation.
Emitter Followers.
SEM I 2008/09 LECTURE IV: C-E AC ANALYSIS II DMT 231 / 3 ELECTRONICS II Lecture IV AC Analysis II [BJT Common-Emitter Amplifier]
EMT 212 ANALOG ELECTRONICS Professor Robert T Kennedy.
Electronics Overview : the Property of One- way Conduction of diodes 1. forward bias ( P is positive and N is nagative ) the current flow is significant.
1 DC Imperfections: Input bias current: Input offset current:
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Zener Diode Circuits for Power Supply Designs Section 4.4.
REAL OP-AMP LIMITATIONS
Op Amp Applications 1EEE 3308 Analyses for A ∞ and loop gain are separate. Design breaks down into two parts: - Arranging A ∞ to do the job - Ensuring.
FULL-WAVE RECTIFIER (FWR) Rs I p (peak value I rms t I V av Irms = 0.7 Ip Idc = 2/π Ip Idc = Iav = 0.9 Irms Form factor = 1/0.9 = 1.11.
Differential Amplifiers
OP-AMP APPLICATIONS CONSTANT-GAIN MULTIPLIER CONTROLLED SOURCES INSTRUMENTATION AMPLIFIER.
CONSTANT-GAIN MULTIPLIER CONTROLLED SOURCES INSTRUMENTATION AMPLIFIER
Op-amp used as a summing amplifier or adder It is possible to apply more than one input signal to an inverting amplifier. This circuit will then add all.
1 Operational Amplifiers n Ideal Op-Amp –input terminals –differential gain, open-loop gain.
1 COMPARATORS Function: Compares two input voltages and produces an output in either of two states indicating the greater than or less than relationship.
OP-AMPs Op Amp is short for operational amplifier. An operational amplifier is modeled as a voltage controlled voltage source. An operational amplifier.
ECE201 Lect-131 Loop Analysis (7.8) Circuits with Op-Amps (3.3) Dr. Holbert October 9, 2001.
Operational Amplifier OpAmp
Ref:080114HKNOperational Amplifier1 Op-Amp Properties (1)Infinite Open Loop gain -The gain without feedback -Equal to differential gain -Zero common-mode.
Institute of Technology and Management Vadodara. Presentation By :- Malakar Devesh D. En No Electronic & Communication Eng. 2 nd year /
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
Visit for more Learning Resources
ALPHA COLLEGE OF ENGINEERING & TECHNOLOGY
Presentation transcript:

EMT 212 ANALOG ELECTRONICS Professor Robert T Kennedy

Prof. R T Kennedy

TRANSCONDUCTANCE AMPLIFIER Prof. R T Kennedy SERIES F B  tr T F A tco ViVi VfVf VdVd VOVO ioio - ioio SYSTEM FEEDBACK vivi vdvd vfvf A tco  tr

TRANSCONDUCTANCE AMPLIFIER Prof. R T Kennedy + R1R1 - vivi ioio ioio + - R1R1 vovo vivi vdvd vfvf vfvf ioio ioio ioio ioio

TRANSCONDUCTANCE AMPLIFIER + R1R1 - vivi ioio ioio Prof. R T Kennedy vivi + - R1R1 vdvd vfvf vfvf ioio ioio ioio ioio ioio

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP GAIN Prof. R T Kennedy ioio SYSTEM FEEDBACK vivi vdvd vfvf A tco  tr -

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP GAIN Prof. R T Kennedy  tr vfvf R1R1 ioio ioio

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP INPUT IMPEDANCE Prof. R T Kennedy + - R1R1 vivi vdvd vfvf R IN r in i in ioio ioio ioio

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP INPUT IMPEDANCE Prof. R T Kennedy + - R1R1 vivi vdvd vfvf R IN r in i in ioio ioio ioio

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS OUTPUT IMPEDANCE Prof. R T Kennedy vfvf v (+) v (-) vovo r out A tc0 v d r out + - i out

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP OUTPUT IMPEDANCE + - R1R1 vivi vdvd vfvf R OUT r out ioio ioio ioio Prof. R T Kennedy

TRANSCONDUCTANCE AMPLIFIER IDEAL OP-AMP ANALYSIS CLOSED LOOP OUTPUT IMPEDANCE Prof. R T Kennedy + - R1R1 vivi vdvd vfvf R OUT r out ioio ioio ioio

AMPLIFIER ‘PRACTICAL’ OP-AMP Prof. R T Kennedy gnd + R1R1 RFRF - vovo vivi +V -V CDCD gnd CDCD RVRV RCRC

TRANSCONDUCTANCE AMPLIFIER ‘PRACTICAL’ OP-AMP OUTPUT DC OFFSET VOLTAGE due to BIAS CURRENTS Prof. R T Kennedy + R1R1 RmRm - V i =0 v (-) =0 V o =i b(-) R m v (+) =0 i b(+ ) i b(-) i=0 v (-) =0 i b(-)

TRANSCONDUCTANCE AMPLIFIER ‘PRACTICAL’ OP-AMP OUTPUT DC OFFSET VOLTAGE due to BIAS CURRENTS COMPENSATION Prof. R T Kennedy + R1R1 - VoVo v (+) =v (-) i b(+ ) i b(-) i R1 ifif RmRm RCRC i b(+) R C v R1

TRANSCONDUCTANCE AMPLIFIER APPLICATIONS HIGH INPUT IMPEDANCE VOLTAGE –CURRENT CONVERTER  HIGH INPUT IMPEDANCE DC VOLTMETER  HIGH INPUT IMPEDANCE AC VOLTMETER  ZENER DIODE TESTER  DIODE TESTER  LED TESTER Prof. R T Kennedy

TRANSCONDUCTANCE AMPLIFIER HIGH INPUT IMPEDANCE DC VOLTMETER Prof. R T Kennedy + - ImIm R A + - V out RmRm V DC i b(-) V DC IRIR

TRANSCONDUCTANCE AMPLIFIER HIGH INPUT IMPEDANCE DC VOLTMETER Prof. R T Kennedy + - ImIm R A + - V out RmRm V DC i b(-) V DC IRIR AMMETER SCALING I FSD V DC 1 mA 1V 1 k  1 mA 5V 10 k  I FSD V DC 50  A 1V 20 k  50  A 5V 100 k 

TRANSCONDUCTANCE AMPLIFIER HIGH INPUT IMPEDANCE AC VOLTMETER Prof. R T Kennedy + - V ac ImIm ~ - V out RmRm R A + D1D1 D3D3 D4D4 D2D2

TRANSCONDUCTANCE AMPLIFIER HIGH INPUT IMPEDANCE AC VOLTMETER Prof. R T Kennedy AMMETER SCALING I FSD Vac(rms) 100  A 1V 9 k  + - V ac ImIm ~ - V out RmRm R A + D1D1 D3D3 D4D4 D2D2 I FSD V DC 100  A 1V 10 k 

TRANSCONDUCTANCE AMPLIFIER ZENER DIODE TESTER Prof. R T Kennedy + - R + - V out V DC i b(-) V DC IRIR VZVZ IZIZ

TRANSCONDUCTANCE AMPLIFIER ZENER DIODE TESTER Prof. R T Kennedy + - R + - V out V in i b(-) V DC IRIR VZVZ IZIZ RZRZ

TRANSCONDUCTANCE AMPLIFIER DIODE TESTER Prof. R T Kennedy + - R + - V out i b(-) V DC VDVD IDID IRIR IDID V (-)

TRANSCONDUCTANCE AMPLIFIER LED TESTER Prof. R T Kennedy + - R + - V out V in i b(-) V DC IRIR VDVD IDID

TRANSCONDUCTANCE AMPLIFIER TEST CURRENT > OP-AMP OUTPUT LIMIT + - R + - V out V in i b(-) V DC IRIR VDVD IDID -Vsuppply Prof. R T Kennedy

TRANSCONDUCTANCE AMPLIFIER GROUNDED LOAD current controlled by (+) input Prof. R T Kennedy + - RLRL V out VLVL i b(+) V DC ILIL R R R R VLVL VLVL IFIF I IN

TRANSCONDUCTANCE AMPLIFIER GROUNDED LOAD current controlled by (-) input Prof. R T Kennedy + - RLRL V out VLVL i b(+) V DC ILIL R R R R IFIF I IN V (-)