Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.

Slides:



Advertisements
Similar presentations
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Advertisements

Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Dynamical Mean Field Theory from Model Hamiltonian Studies of the Mott Transition to Electronic Structure Calculations Gabriel Kotliar Physics Department.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Excitation spectra.
Dynamical Mean Field Approach to Strongly Correlated Electrons Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Field.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights into real materials : DMFT at work. From theoretical solid state physics to materials science.
Dynamical Mean Field Theory (DMFT) Approach to Strongly Correlated Materials G. Kotliar Physics Department and Center for Materials Theory Rutgers SCES04.
Elemental Plutonium: Electrons at the Edge Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium UT July 2003.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
High Temperature Superconductors. What can we learn from the study of the doped Mott insulator within plaquette Cellular DMFT. Gabriel Kotliar Center for.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Northwestern.
Electronic Structure Near the Mott transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline Model Hamiltonians and qualitative considerations in the physics of materials. Or what do we want to.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
When Band Theory Does Not Work and What One Can Do About It: Dynamical Mean Field Approach to Strongly Correlated Materials Gabriel Kotliar Physics Department.
Electronic Structure of Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Cellular-DMFT approach to the electronic structure of correlated solids. Application to the sp, 3d,4f and 5f electron systems. Collaborators, N.Zein K.
Electronic Structure of Correlated Materials : a DMFT Perspective
Dynamical Mean Field Theory for Electronic Structure Calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Dynamical Mean Field Theory in Electronic Structure Calculations:Applications to solids with f and d electrons Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Applications of DMFT to correlated electrons.
Dynamical Mean Field Theory DMFT and electronic structure calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium.
Optical Properties of Strongly Correlated Electrons: A Dynamical Mean Field Approach G. Kotliar Physics Department and Center for Materials Theory Rutgers.
The Mott Transition and the Challenge of Strongly Correlated Electron Systems. G. Kotliar Physics Department and Center for Materials Theory Rutgers PIPT.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University UBC September.
Towards Realistic Electronic Structure Calculations of Correlated Materials Exhibiting a Mott Transition. Gabriel Kotliar Physics Department and Center.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Statistical.
Dynamical Mean Field Theory, Mott transition and Electronic Structure of Actinides Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Introduction to Dynamical Mean Field Theory (DMFT) and its Applications to the Electronic Structure of Correlated Materials Zacatecas Mexico PASSI School.
Dynamical Mean Field Theory and Electronic Structure Calculations Gabriel Kotliar Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers ICAM meeting:
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
The Mott Transition: a CDMFT study G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS The Mott transition in transition metal oxides and in organic materials: a dynamical mean field theory (DMFT)
Correlation Effects in Itinerant Magnets, Application of LDA+DMFT(Dynamical Mean Field Theory) and its static limit the LDA+U method. Gabriel Kotliar Physics.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Spectral Density Functional: a first principles approach to the electronic structure of correlated solids Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Computational Studies of Strongly Correlated Materials Using Dynamical Mean Field Theory Gabriel Kotliar Center for Materials Theory Rutgers University.
First Principles Investigations of Plutonium Americium and their Mixtures using Dynamical Mean Field Theory Washington February 5-8 (2007). Gabriel.Kotliar.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline, Collaborators, References Introduction to extensions of DMFT for applications to electronic structure.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers 5 th International.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS La 1-x Sr x TiO 3 photoemission.
Gabriel Kotliar Rutgers
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Jerusalem Winter.
Correlated Materials: A Dynamical Mean Field Theory (DMFT) Perspective. Gabriel Kotliar Center for Materials Theory Rutgers University CPhT Ecole Polytechnique.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Searching for spin-liquids and non-Fermi liquids in quantum strongly correlated systems.
Mon, 6 Jun 2011 Gabriel Kotliar
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Presentation transcript:

Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University

What do we want from materials theory? New concepts, qualitative ideas Understanding, explanation of existent experiments, and predictions of new ones. Quantitative capabilities with predictive power.

Materials Theory a) System specific properties. b) General principles, universal features. Qualitative insights, quantitative techniques, analytical and computational. Development of methods and algorithms, and study of system specific applications. Balanced Approach

Mott transition and superexchange

Mott transition in V 2 O 3 under pressure or chemical substitution on V-site

Phase Diagram k Organics

Mott transition in layered organic conductors S Lefebvre et al. cond-mat/ , Phys. Rev. Lett. 85, 5420 (2000)

Failure of the Standard Model: NiSe 2-x S x Miyasaka and Takagi (2000)

Failure of the Standard Model: NiSe 2-x S x Miyasaka and Takagi (2000)

Failure of the Standard Model: NiSe 2-x S x Miyasaka and Takagi (2000)

Anomalous Resistivity and Mott transition Ni Se 2-x S x Insights from DMFT: think in term of spectral functions (branch cuts) instead of well defined QP (poles )

Evolution of the Spectral Function

Double Occupancy vs U CDMFT Parcollet, Biroli GK

Pressure Driven Mott transition

Failure of the Standard Model: NiSe 2-x S x Miyasaka and Takagi (2000)

Transport in k organics

Ising critical endpoint! In V 2 O 3

Mott transition in CDMFT

Strong frustration limit. Anomalous transfer of spectral weight connected to the proximity to the Ising Mott endpoint (Kotliar Lange and Rozenberg Phys. Rev. Lett. 84, 5180 (2000)