Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.

Slides:



Advertisements
Similar presentations
Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003.
Advertisements

Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Page 1 Cristina Chifor (a) Ken Phillips (b), Brian Dennis (c) a) DAMTP, University of Cambridge, UK b) Mullard Space Science Lab, UK c) NASA/GSFC, Maryland,
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
RHESSI Observations of Gamma- Ray Lines from Solar Flares Albert Y. Shih 1, David M. Smith 2, Robert P. Lin 1, Richard A. Schwartz 3, Gerald H. Share 4,
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Probing Ion Acceleration by Observing Gamma Rays from Solar Flares Albert Y. Shih 1 NASA Advisor: Brian R. Dennis 2 Faculty Advisor: Robert P. Lin 1 1.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Statistical Properties of Hot Thermal Plasmas in M/X Flares Using RHESSI Fe & Fe/Ni Line * and Continuum Observations Amir Caspi †1,2, Sam Krucker 2, Robert.
Spectroscopy below ~20 keV Brian Dennis RHESSI/NESSI III 3/30 – 4/01/2005.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
SPD May 25, 2005 RHESSI soft X-ray imaging spectroscopy H. Hudson & A. Caspi (SSL/UCB) And B. Dennis & K. Phillips (NASA/GSFC.
Spectral Analysis and Energy Estimates in M/X Flares using RHESSI and SXI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University.
It is possible that reconnection can occur multiple times along CS Plasmoids form as magnetic ‘islands’ between X-points Due to density and.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
RHESSI/NESSIE, June 2003 H.S. Hudson The RHESSI 3-10 keV spectrum H. Hudson, B. Dennis, K. Phillips, R. Schwartz, D. Smith.
Distinguishing Between Thermal and Non-Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Robert P. Lin 1,2 1 Department of Physics,
Temporal Variability of Gamma- Ray Lines from the X-Class Solar Flare of 2002 July 23 Albert Y. Shih 1,2, D. M. Smith 1, R. P. Lin 1,2, S. Krucker 1, R.
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
SSL UC Berkeley 2010 June ACE/SOHO/STEREO/Wind Workshop When and Where are Impulsive SEPs Accelerated? Linghua Wang, Bob Lin, S ä m Krucker Space Sciences.
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
RHESSI/GOES Xray Analysis using Multitemperature plus Power law Spectra. J.McTiernan (SSL/UCB)
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Neupert effect RHESSI analysis ot the Neupert effect A. Berlicki, R. Falewicz 1) Observatoire de Paris, Section de Meudon, LESIA, FRANCE 2) Astronomical.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
RHESSI Microflares Steven Christe 1,2, Säm Krucker 2, Iain Hannah 3, R. P. Lin 1,2 1 Physics Department, University of California at Berkeley 2 Space Sciences.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
26 June 2008SHINE, Zermatt, UT1 High-energy Elemental, Isotopic, and Charge-State Composition in 3 He-rich Solar Energetic Particle Events M.E. Wiedenbeck.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
RHESSI Microflare Statistics Iain Hannah, S. Christe, H. Hudson, S. Krucker, L. Fletcher & M. A. Hendry.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
Chandra X-Ray Spectroscopy of DoAr 21: The Youngest PMS Star with a High-Resolution Grating Spectrum The High Energy Grating Spectrum of DoAr 21, binned.
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
Fe XXV Kα Fe I Kα S XV Kα Strong Fe XXV Kα, S XV Kα, and Fe I Kα  the GCXE consists of High Temperature Plasma (HP), Low Temperature Plasma (LP), and.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Thermal Imaging of Multi-Temperature Flare Plasma with RHESSI Visibilities A.Caspi S. Krucker, G. Hurford, J. McTiernan Space Sciences Laboratory University.
Two Years of NoRH and RHESSI Observations: What Have We Learned
RHESSI Working Group 4 Program – Taos workshop
Chromospheric and Transition Region Dynamics
The spectral evolution of impulsive solar X-ray flares
Transition Region and Coronal Explorer (TRACE)
Presentation transcript:

Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of California, Berkeley, CA Space Sciences Laboratory, University of California, Berkeley, CA 94720

June 3, 2004AAS/SPD Meeting2 Motivation

June 3, 2004AAS/SPD Meeting3 Questions Is the flare isothermal? –If not, what is the temperature distribution? –Where are thermal sources located? What is the low-energy cutoff for the nonthermal emission? –Critical for energy estimates  Want to determine flare energetics, heating and acceleration mechanisms

June 3, 2004AAS/SPD Meeting4 Fe & Fe/Ni line complexes Line(s) are visible in almost all RHESSI flare spectra Fluxes and equivalent width of lines are strongly temperature-dependent (Phillips 2004)

June 3, 2004AAS/SPD Meeting5 Fe & Fe/Ni line complexes Differing temperature profiles of line complexes suggests ratio is unique determination of isothermal temperature (Phillips 2004)

June 3, 2004AAS/SPD Meeting6 Fe & Fe/Ni line complexes Assume isothermal –Not necessarily the best fit! Single power law with low-energy cutoff 2 Gaussians to approximate Fe & Fe/Ni line complexes

June 3, 2004AAS/SPD Meeting7 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting8 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting9 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting10 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting11 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting12 More questions Well-defined correlation between Fe to Fe/Ni ratio and isothermal temperature for each flare, but… No agreement between observations and theory No agreement between individual flares! Why are observations so far from the theory? Why are the curves different between flares?

June 3, 2004AAS/SPD Meeting13 Possible answer Multi-thermal distribution –Differs between flares Imaging spectroscopy would be ideal –Obtain spectra based on source location Isolate and analyze multiple thermal plasmas at different temperatures within each flare Distinguish between thermal and non-thermal sources

June 3, 2004AAS/SPD Meeting14 Centroids of emission Clear displacement between centroids of lower energy and higher energy emission

June 3, 2004AAS/SPD Meeting15 Centroids of emission Higher energy emission from higher in the looptop –Strongly implies multi-thermal distribution Centroid of Fe line complex emission consistent with high- EM, lower-T plasma lower in looptop

June 3, 2004AAS/SPD Meeting16 Conclusions Observations do not agree with predictions –Multi-thermal distribution –Other variations Ongoing Work Obtain DEM to determine temperature distributions Imaging spectroscopy for spatially-separated sources, to separate thermal sources at different temperatures, and to distinguish between thermal and non-thermal sources  Determine flare energetics

June 3, 2004AAS/SPD Meeting17 Count Spectrum

June 3, 2004AAS/SPD Meeting18 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting19 Flux ratio vs. Temperature

June 3, 2004AAS/SPD Meeting20 Flare location/size