Simple Harmonic Motion

Slides:



Advertisements
Similar presentations
Oscillations and Simple Harmonic Motion:
Advertisements

Chapter 14 - Simple Harmonic Motion
Kinematics of simple harmonic motion (SHM)
بسم الله الرحمن الرحيم.
Chapter 5 Kinetic Energy
SHM -1.
Adapted from Holt book on physics
Introduction to Oscillations and Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound a) Simple Harmonic Motion (SHM)
Oscillation.
Oscillations Phys101 Lectures 28, 29 Key points:
Simple Harmonic Motion
Harmonic Motion AP Physics C.
CHAPTER 10 Elasticity and Oscillations
NAZARIN B. NORDIN What you will learn: Load transfer, linear retardation/ acceleration Radius of gyration Moment of inertia Simple.
Simple Harmonic Motion
Simple Harmonic Motion
Vibrations and Waves AP Physics Lecture Notes m Vibrations and Waves.
OSCILLATIONS Chapter 15. Simple Harmonic Motion (SHM) Systems.
SIMPLE HARMOIC MOTION CCHS Physics.
Chapter 11 - Simple Harmonic Motion
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Springs We are used to dealing with constant forces. Springs are more complicated - not only does the magnitude of the spring force vary, the direction.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Simple Harmonic Motion. l Vibrations è Vocal cords when singing/speaking è String/rubber band l Simple Harmonic Motion è Restoring force proportional.
Oscillations and Waves An oscillation is a repetitive motion back and forth around a central point which is usually an equilibrium position. A special.
Simple Harmonic Motion
تابع المحاضرة الثالثة Circular Motion There are two types of circular motion:- 1- Uniform circular motion 2- Non uniform circular motion 1- Uniform circular.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 11 Simple Harmonic Motion.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
Chapter 15: Oscillations
Simple Harmonic Motion. Restoring Forces in Spring  F=-kx  This implies that when a spring is compressed or elongated, there is a force that tries to.
Simple Harmonic Motion
Chapter 15 Oscillations. Periodic motion Periodic (harmonic) motion – self-repeating motion Oscillation – periodic motion in certain direction Period.
Simple Harmonic Motion: SHM
4.1.1Describe examples of oscillation Define the terms displacement, amplitude, frequency, period, and phase difference Define simple harmonic.
Simple Harmonic Motion. Definitions Periodic Motion – When a vibration or oscillation repeats itself over the same path Simple Harmonic Motion – A specific.
Periodic Motion What is periodic motion?
Simple Harmonic Motion This type of motion is the most pervasive motion in the universe. All atoms oscillate under harmonic motion. We can model this motion.
{ SHM Simple Harmonic Motion. Simply put, simple harmonic motion is a motion ‘back and forth’ away from and back to equilibrium In SHM, the motion is.
SIMPLE HARMONIC MOTION. STARTER MAKE A LIST OF OBJECTS THAT EXPERIENCE VIBRATIONS:
Periodic Motions.
Simple Harmonic Motion. Ideal Springs F Applied =kx k = spring constant x = displacement of the spring +x  pulled displacement -x  compressed displacement.
Chapter 11: Harmonic Motion
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Elasticity and Oscillations Exam III.
Simple Harmonic Motion
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Whenever the force acting on an object is: Whenever the force acting on an object is: 1. Proportional to the displacement 2. In the opposite direction,
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
PHY 101: Lecture Ideal Spring and Simple Harmonic Motion 10.2 Simple Harmonic Motion and the Reference Circle 10.3 Energy and Simple Harmonic Motion.
Any regular vibrations or oscillations that repeat the same movement on either side of the equilibrium position and are a result of a restoring force Simple.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Simple Harmonic Motion Wenny Maulina Simple harmonic motion  Simple harmonic motion (SHM) Solution: What is SHM? A simple harmonic motion is the motion.
Chapter 10 Waves and Vibrations Simple Harmonic Motion SHM.
Harmonic Motion AP Physics C.
AP Physics Lecture Notes
Oscillations © 2014 Pearson Education, Inc..
Oscillations AP Physics C.
Harmonic Motion AP Physics C.
Simple Harmonic Motion
Harmonic Motion AP Physics C.
Harmonic Motion AP Physics C.
Harmonic Motion AP Physics C.
Reminder: Course Evaluation
Simple Harmonic Motion and Wave Interactions
Presentation transcript:

Simple Harmonic Motion A restoring force is one that moves a system back to an equilibrium position. Example: mass on frictionless table, attached to spring.

Example: gravity acting on a mass hanging from a string. * Example: gravity acting on a mass hanging from a spring. *Lots of material borrowed from: http://hyperphysics.phy-astr.gsu.edu/hbase/permot.html#permot

When the restoring force is linearly proportional to the amount of the displacement from equilibrium, the force is said to be a Hooke’s Law force. Physicists are always sloppy with their signs when doing Hooke’s law calculations.

We have studied Hooke’s Law already We have studied Hooke’s Law already. Hooke’s Law is valid for forces that take the form (in one dimension) Fx = - kx, where x is the displacement from equilibrium. OSE: F= kx, restoring It is easy to show with calculus that, in the limit of small displacement, all restoring forces are Hooke’s Law forces. Systems consisting of Hooke’s Law forces undergo simple harmonic motion when displaced away from equilibrium. Such systems are often called simple harmonic oscillators. Examples of simple harmonic motion: mass bouncing on spring, swinging pendulum.

Here’s that calculus I mentioned Here’s that calculus I mentioned. Perhaps you recall from math how functions can be written in the form of a Maclaurin’s series (a Taylor series about the origin): If F represents a restoring force (a force that “pulls the system back to the origin”) then F(0) = 0. For small displacements x, all the higher order terms (involving x2, x3, etc.) are small, so The – sign enters because F is a restoring force, so the derivative is negative.

A complete back-and-forth (or whatever) motion is called a cycle. The displacement (x, or in this case, y) is measured away the equilibrium position. The maximum displacement is called the amplitude A.

The time for one cycle is the period, T. The number of cycles per second is the frequency. We’ll learn about angular frequency shortly.

Energy in the Simple Harmonic Oscillator We get our OSE for the total mechanical energy of a simple harmonic oscillator by considering a mass attached to a spring on a horizontal, frictionless surface: E = mv2/2 + kx2/2 (here I am using x instead of s). At the equilibrium position (x=0), the energy is all kinetic. At x=A the energy is all potential. Thus mv2/2 + kx2/2 = kA2/2 = mv02/2 where v0 is the speed at x=0 where the energy is all kinetic. Your text solves this for v(t) and makes it look like a brand new equation, when it is really just old stuff.

Example 11-3. A spring stretches 0. 15 m when a 0 Example 11-3. A spring stretches 0.15 m when a 0.3 kg mass is hung from it. The spring is then stretched an additional 0.1 m from this equilibrium point and released. Determine (a) the spring constant k, (b) the amplitude of oscillation A, (c) the maximum velocity v0, (d) the magnitude of the velocity when the mass is 0.04 m from equilibrium, and (e) the magnitude of the maximum acceleration of the mass.

Wait a minute! Where did the gravitational potential energy go? Once you confirm that a system undergoes simple harmonic motion, all the equations for a simple harmonic oscillator apply. The total mechanical energy of the system is the kinetic energy of the object oscillating, plus the potential energy associated with the restoring force. You need not worry about other details of the system! This is abstract, but powerful!

The Periodic and Sinusoidal Nature of SHM Important: the force in SHM is not constant, so the acceleration is not constant, so you can’t use the equations of kinematics. An object rotating in a circle (which is has a frequency and a period) is mathematically analogous to the SHM of a vibrating spring. Click here to see this in action.

Your text shows that T=2(m/k)1/2 and f=(1/2)(k/m)1/2. Before, for an object undergoing circular motion,  was the angular velocity and T=2/ the time for a revolution. For circular motion, the angular velocity  is the angle per second swept out by the radius vector, and is measured in radians per second. For SHM, the frequency f is the number of complete cycles per second completed by the oscillator.

There are 2 radians in a circle, so if we represent a cycle by one time around the circle, =2f, and there are 2 radians in a cycle. For SHM, the angular frequency  also has units of radians per second. It is no coincidence that angular velocity and angular frequency have the same symbol and the same units.

Relationships between period, frequency, and angular frequency: For SHM, the angular frequency is Using our analogy with circular motion: x = A cos (t) = A cos (2f t) v = -v0 sin (2f t) where v0 = 2Af a = -a0 cos (2f t) where a0 = kA/m. All the equations on this page are OSE’s!

Example 11-7. The cone of a loudspeaker vibrates in SHM at a frequency of 262 Hz. The amplitude of the center of the cone is A=1.5x10-4 m, and at t=0, x=A. (a) What is the equation describing the motion of the center of the cone. (b) What is the maximum velocity and maximum acceleration? (c) What is the position of the cone at t=1x10-3 s?

The Simple Pendulum The restoring force is F = mg sin. In the limit of small , this becomes F = mg  (restoring). This is a Hooke’s Law force and SHM occurs. Your text shows that the period is

For SHM, the period does not depend on the amplitude. For a pendulum with small , this is true, so a pendulum exhibits SHM for small displacements. For large  (greater than 15 degrees or so) the small-angle approximation is not valid and the period does depend on the amplitude (max). Example 11-8. (a) Estimate the length of the pendulum in a grandfather clock that ticks once per second. (b) What would be the period of a clock with a 1 meter long pendulum?