High spin states in 136,137 La, 148 Ce and 105 Mo.

Slides:



Advertisements
Similar presentations
Exotic Shapes and High Spin physics with Intense Stable Beams.
Advertisements

LOI for the AGATA-PRESPEC campaign, GSI Spectroscopy and B(E2) measurements in neutron rich Mo nuclei: Search for shape transitions near the astrophysical.
Initial Science Case For GRETINA at ATLAS M.P. Carpenter Physics Division, Argonne National Laboratory ANL Gretina Workshop March 1, 2013.
University of Liverpool
Electromagnetic Properties of
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
The Collective Model Aard Keimpema.
Search for Triaxial Deformation in Neutron-Rich Mo/Ru Nuclei Daryl Hartley US Naval Academy Support from the National Science Foundation is Gratefully.
Projected-shell-model study for the structure of transfermium nuclei Yang Sun Shanghai Jiao Tong University Beijing, June 9, 2009.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
R. Palit Department of Nuclear and Atomic Physics
Microwave Spectroscopy II
Rotational bands in the rare-earth proton emitters and neighboring nuclei Darek Seweryniak Argonne National Laboratory PROCON Rotational landscape.
Study Of Nuclei at High Angular Momentum – Day 3 Michael P. Carpenter Nuclear Physics School, Goa, India Nov. 9-17, 2011 Some Current Topics In High-Spin.
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
The Shell Model of the Nucleus 5. Nuclear moments
Study Of Nuclei at High Angular Momentum – Day 2 Michael P. Carpenter Nuclear Physics School, Goa, India Nov. 9-17, 2011 Outline 1)Introduction 2)Deformation.
Reiner Krücken - Yale University Reiner Krücken Wright Nuclear Structure Laboratory Yale University Why do we measure lifetimes ? The recoil-distance method.
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
Research activities of ATOMKI at former LSF IReS Strasbourg High-spin states J Timár, ATOMKI, Debrecen Prague 2007.
Rotation and alignment of high-j orbitls in transfermium nuclei Dr. Xiao-tao He College of Material Science and Technology, Nanjing University of Aeronautics.
High-spin structures in the 159 Lu nucleus Jilin University, China Institute of Atomic Energy 李聪博 The 13th National Nuclear Structure Conference of China.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
Evolution of Nuclear Structure with the Increase of Neutron Richness – Orbital Crossing in Potassium Isotopes W. Królas, R. Broda, B. Fornal, T. Pawłat,
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
1 New symmetries of rotating nuclei S. Frauendorf Department of Physics University of Notre Dame.
The Highs and Lows of the A~100 Region Paddy Regan Dept. of Physics, University of Surrey, UK and WNSL, Yale University, New Haven, CT
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
The changing structure of 160 Er from low to ultrahigh spin J. Ollier Daresbury Laboratory.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Erosion of N=28 Shell Gap and Triple Shape Coexistence in the vicinity of 44 S M. KIMURA (HOKKAIDO UNIV.) Y. TANIGUCHI (RIKEN), Y. KANADA-EN’YO(KYOTO UNIV.)
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
In-beam  -ray spectroscopy of neutron-rich nuclei in the uranium region through the heavy-ion transfer reaction ISHII Tetsuro Japan Atomic Energy Agency.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Search for chiral doublet structures in odd-A 79 Kr with the Hyperball2 CYRIC CYRIC/Tohoku University J.Timar ATOMKI (Hungary) K. Starosta (MSU)
A close up of the spinning nucleus S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
第十四届全国核结构大会暨第十次全国核结构专题讨论会
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
A.V. Ramayya and J.H. Hamilton Vanderbilt University.
169 Re Future Triaxial Studies What role does the proton Fermi Surface have in the observation of wobbling? What role does the proton Fermi Surface have.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Dipa Bandyopadhyay University of York
 Standard Model goes pear-shaped in CERN experiment The Register  Physicists get a good look at pear-shaped atomic nuclei The Los Angeles Times  Exotic.
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
Chiral Symmetry Breaking in Nuclei J.H. Hamilton 1, S.J. Zhu 1,2,3, Y.X. Luo 1,4,, A.V. Ramayya 1, J.O. Rasmussen 4, J.K. Hwang 1, S. Frauendorf 5, V.
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
48 Ti(n, xnyp  ) reaction cross sections using spallation neutrons for E n = 1 to 20 MeV Excitation functions have been measured for the interaction of.
How do nuclei rotate? 3. The rotating mean field.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Negative-parity Bands of 115 Pd and Band Structures in 113,115,117 Pd D. Fong, E.F. Jones, P.M. Gore, J.K. Hwang, A.V. Ramayya, J.H. Hamilton, and Y.X.
Nordita Workshop on chiral bands /04/2015 Multiple chiral bands associated with the same strongly asymmetric many- particle nucleon configuration.
Dimitar Tonev, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Lifetime measurements in mass regions A=100 and A=130 as.
Chiral Symmetry Symposium Beijing 2013 Uniwersytet Warszawski Phase transition into spontaneous chiral symmetry breaking Ernest Grodner The Seventh Symposium.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
of very neutron deficient heavy nuclei
Observation of Octupole Correlations in Ba and Ce Nuclei
Workshop Spiral II - Caen 4-6th October 2005
Shape parameterization
Evolution of octupole collectivity in 221Th
Isomers and shape transitions in the n-rich A~190 region:
2Joint Institute for Nuclear Research, Dubna , Russia
New Levels in 162Gd DOLL Brayton M. (NBPHS, Vanderbilt University) BREWER, N.T. (Vanderbilt University) HAMILTON, J. H. (Vanderbilt University) RAMAYYA,
Rotation and alignment of high-j orbitls in transfermium nuclei
High spin physics- achievements and perspectives
Quest for chirality in 107Ag
Presentation transcript:

High spin states in 136,137 La, 148 Ce and 105 Mo

S. J. Zhu 1, Y. J. Chen 1, M. L. Li 1, H. B. Ding 1., J. H. Hamilton 2, A. V. Ramayya 2, J. K. Hwang 2, X. S. Dong 1, U. Y. Nan 1, L. H. Zhu 3, S. X. Wen 3, X. G. Wu 3 1 Department of Physics, Tsinghua University, Beijing , People’s Republic of China 2 Department of Physics, Vanderbilt University, U.S.A 3 China Institute of Atomic Energy, Beijing, , People’s Republic of China

I. INTRODUCTION II. EXPERIMETAL METHODS III. RESULTS AND DISCUSSION IV. SUMMARY

I. INTRODUCTION 136,137 La 148 Ce Mo

A. A=135 Region: 136 La (Z=57, N= 79) 137 La (Z=56, N=80) N: near N=82 magic number, stronger single- particle character. At the high spin states, look for collective bands: prolate bands, oblate bands

E.S.Paul et al. PRL,58, 984(1987) The shape driving effect :

B. A=140 neutron-rich Region: 148 Ce: Searching for octupole deformation.

C. A=110 neutron-rich Region: 105 Mo: odd-A nucleus: Searching for two- phonon vibrational- rotation bands.

II. EXPERIMETAL METHODS A. 136 La: 130 Te( 11 B, 5n), beam: 60 MeV 137 La: 130 Te( 11 B, 4n), beam: 50 MeV CIAE HI-13 tandem accelerator 50  10 6 coincidence events

CIAE In-Beam Gamma-ray detectors

B. 148 Ce, 105 Mo : measure the prompt  -rays from spontaneous fission of 252 Cf. Lawrence Berkeley National Laboratory GAMMASPERE Detector Array 105 Compton-Suppressed Ge Detectors 252 Cf Source Total of 5.7×10 11 triple- and higher-fold  -  -  coincidence events (in cube) Radware software package to analyze data

III. RESULTS AND DISCUSSION A. 136 La: E.W.Cybulska et al. Acta Phys. Pol.B32, 929 (1999).

Old: (8 + )  h 11/2  h 11/2 systematic

Band (2) Bands(2) and (3): oblate(  =-60  ). 1.stronger △ I=1transitions, 2.no signature splitting, 3. different moments of inertia from plolate. Band (2): Band (3):

↑New! B. 137 La:

Band (1): collective backbending

Proton routhianNeutron routhian 0.48 MeV 0.40 MeV

带 ( 3 ) ——— 扁椭带 Band (3): oblate band (  ~-60  )

C. 148 Ce: Theoretical prediction: When N,Z=34, 56, 88, 132, a pair of single particle orbitals with  N=1,  l=3,  j=3 closes to each other, octupole element Y 30 is very strong, strong octupole correlations occur.

Z=56, N=88, around A=144 neutron-rich region, octupole deformation discovered. Using simplex quantum number s to express For even A nuclei, S= +1, I p =0 +, 1 -, 2 +, 3 -, 4 +, 5 -, ….. S= -1, I p =0 -, 1 +, 2 -, 3 +, 4 -, 5 +, ….. For odd A nuclei, S= +i, I p =1/2 +, 3/2 -, 5/2 +, 7/2 -, 9/2 +, 11/2 -, ….. S= -1, I p =1/2 -, 3/2 +, 5/2 -, 7/2 +, 9/2 -, 11/2 +, …..

Experimental structure:  Two  I=2 band structures with positive and negative parities respectively.  Strong B(E1) transitions between two opposite parity bands.

Z=56: 140 Ba, 141 Xe, 142 Ba, 143 Ba, 144 Ba, 145 Ba, 146 Ba Z=57: 145 La, 147 La Z=58: 144 Ce, 146 Ce Look for the Double octupole bands s=  i in Odd-A nuclei : 143,145 Ba, 145 La (our group)

S.J.Zhu et al., Phys. Rev. C60 (1999)

S=+i S=-i S.J.Zhu et al., Phys. Rev. C59 (1999) 1316.

s=  1 in even-A nuclei, No identified. S=+1

B(E1)/B(E2) s=+1: ~ 0.82  fm -2 s=-1: ~ 1.51  fm- 2

C. 105 Mo: Search for: collective bands:  vibrational- rotational bands one- phonon  vibrational- rotational bands: Mo: 104,106 Mo, 108,110,112 Ru two- phonon  vibrational- rotational bands: 104,106 Mo

 -Vibration  -Vibration

1-  2- 

In odd-A nuclei, look for 2- two- phonon  vibrational- rotational band is difficult, 105 Mo?

1-  2-  3/2 + [411] 1/2 + [411] 5/2 + [413] 5/2 - [532]

1-  2-  yrast

Others: 108,110,112 Ru 1- , 2-  Two-quasiparticle bands Chiral doublet bands?

1-  2- 

1-  2- 

1-  2- 

III. SUMMARY We have investigeted: * A=135 region 136,137 La, Yrast band (prolate) and oblate bands. Band crossing and signature inversion. * A=140 region 148 Ce The s=  i double octupole bands. * A=100 region 105 Mo, 108,110,112 Ru One phonon  - band Two phonon  - band