Graph & BFS.

Slides:



Advertisements
Similar presentations
Cpt S 223 – Advanced Data Structures Graph Algorithms: Introduction
Advertisements

Review Binary Search Trees Operations on Binary Search Tree
Graph Theory, DFS & BFS Kelly Choi What is a graph? A set of vertices and edges –Directed/Undirected –Weighted/Unweighted –Cyclic/Acyclic.
CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann.
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Chapter 8, Part I Graph Algorithms.
Graphs Graphs are the most general data structures we will study in this course. A graph is a more general version of connected nodes than the tree. Both.
Data Structure and Algorithms (BCS 1223) GRAPH. Introduction of Graph A graph G consists of two things: 1.A set V of elements called nodes(or points or.
CS 206 Introduction to Computer Science II 11 / 11 / Veterans Day Instructor: Michael Eckmann.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Connected Components, Directed Graphs, Topological Sort COMP171.
Graph COMP171 Fall Graph / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D E A C F B Vertex Edge.
Introduction to Graphs
Lecture 14: Graph Algorithms Shang-Hua Teng. Undirected Graphs A graph G = (V, E) –V: vertices –E : edges, unordered pairs of vertices from V  V –(u,v)
Graph & BFS Lecture 22 COMP171 Fall Graph & BFS / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D.
1 Data Structures and Algorithms Graphs I: Representation and Search Gal A. Kaminka Computer Science Department.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
CS 206 Introduction to Computer Science II 11 / 03 / 2008 Instructor: Michael Eckmann.
COMP171 Depth-First Search.
CSE 780 Algorithms Advanced Algorithms Graph Algorithms Representations BFS.
CS 206 Introduction to Computer Science II 11 / 05 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 03 / 25 / 2009 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 11 / 09 / 2009 Instructor: Michael Eckmann.
Breadth First Search (BFS) Part 2 COMP171. Graph / Slide 2 Shortest Path Recording * BFS we saw only tells us whether a path exists from source s, to.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
CS 206 Introduction to Computer Science II 03 / 30 / 2009 Instructor: Michael Eckmann.
Social Media Mining Graph Essentials.
Graphs. Motivating Problem Konigsberg bridge problem (1736): Konigsberg bridge problem (1736): C A B D ab c d e f g Starting in one land area, is it possible.
Chapter 9 – Graphs A graph G=(V,E) – vertices and edges
1 Chapter 9 Graph Algorithms Real-life graph problems Algorithms for some graph problems Choice of data structures for graph problems.
Spring 2015 Lecture 10: Elementary Graph Algorithms
Chapter 2 Graph Algorithms.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graphs CSE 2011 Winter June Graphs A graph is a pair (V, E), where  V is a set of nodes, called vertices  E is a collection of pairs.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graphs. Definitions A graph is two sets. A graph is two sets. –A set of nodes or vertices V –A set of edges E Edges connect nodes. Edges connect nodes.
10 Copyright © William C. Cheng Data Structures - CSCI 102 Graph Terminology A graph consists of a set of Vertices and a set of Edges C A B D a c b d e.
Most of contents are provided by the website Graph Essentials TJTSD66: Advanced Topics in Social Media.
CISC 235: Topic 9 Introduction to Graphs. CISC 235 Topic 92 Outline Graph Definition Terminology Representations Traversals.
Graph Introduction, Searching Graph Theory Basics - Anil Kishore.
Graphs A graphs is an abstract representation of a set of objects, called vertices or nodes, where some pairs of the objects are connected by links, called.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 13: Graphs Data Abstraction & Problem Solving with C++
1 Directed Graphs Chapter 8. 2 Objectives You will be able to: Say what a directed graph is. Describe two ways to represent a directed graph: Adjacency.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U.
Data Structures & Algorithms Graphs Richard Newman based on book by R. Sedgewick and slides by S. Sahni.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
© 2006 Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs.
– Graphs 1 Graph Categories Strong Components Example of Digraph
Discrete Structures CISC 2315 FALL 2010 Graphs & Trees.
Graphs Upon completion you will be able to:
Graph. Graph Usage I want to visit all the known famous places starting from Seoul ending in Seoul Knowledge: distances, costs Find the optimal(distance.
Chapter 9: Graphs.
Chapter 05 Introduction to Graph And Search Algorithms.
Graphs. Graph Definitions A graph G is denoted by G = (V, E) where  V is the set of vertices or nodes of the graph  E is the set of edges or arcs connecting.
Data Structures and Algorithm Analysis Graph Algorithms Lecturer: Jing Liu Homepage:
Main Index Contents 11 Main Index Contents Graph Categories Graph Categories Example of Digraph Example of Digraph Connectedness of Digraph Connectedness.
1 GRAPHS – Definitions A graph G = (V, E) consists of –a set of vertices, V, and –a set of edges, E, where each edge is a pair (v,w) s.t. v,w  V Vertices.
Lecture 20. Graphs and network models 1. Recap Binary search tree is a special binary tree which is designed to make the search of elements or keys in.
Graph & BFS.
Graphs Representation, BFS, DFS
Depth-First Search.
CS120 Graphs.
Graph & BFS.
Graphs Representation, BFS, DFS
Graphs All tree structures are hierarchical. This means that each node can only have one parent node. Trees can be used to store data which has a definite.
Connected Components, Directed Graphs, Topological Sort
Chapter 15 Graphs © 2006 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.
Presentation transcript:

Graph & BFS

Graphs Extremely useful tool in modeling problems Consist of: Vertices Edges Vertices can be considered “sites” or locations. Edges represent connections. D E C A F B Vertex Edge

Application 1 Air flight system Each vertex represents a city Each edge represents a direct flight between two cities A query on direct flights = a query on whether an edge exists A query on how to get to a location = does a path exist from A to B We can even associate costs to edges (weighted graphs), then ask “what is the cheapest path from A to B”

Application 2 Wireless communication Represented by a weighted complete graph (every two vertices are connected by an edge) Each edge represents the Euclidean distance dij between two stations Each station uses a certain power i to transmit messages. Given this power i, only a few nodes can be reached (bold edges). A station reachable by i then uses its own power to relay the message to other stations not reachable by i. A typical wireless communication problem is: how to broadcast between all stations such that they are all connected and the power consumption is minimized.

A tree is a connected graph with no loops. Graph, also called network (particularly when a weight is assgned to an edge) A tree is a connected graph with no loops. Graph algorithms might be very difficult! four color problem for planar graph! 171 only handles the simplest ones Traversal, BFS, DFS ((Minimum) spanning tree) Shortest paths from the source Connected components, topological sort

Definition A graph G=(V, E) consists a set of vertices, V, and a set of edges, E. Each edge is a pair of (v, w), where v, w belongs to V If the pair is unordered, the graph is undirected; otherwise it is directed {c,f} {a,c} {a,b} {b,d} {c,d} {e,f} {b,e} An undirected graph

Terminology If v1 and v2 are connected, they are said to be adjacent vertices v1 and v2 are endpoints of the edge {v1, v2} If an edge e is connected to v, then v is said to be incident on e. Also, the edge e is said to be incident on v. {v1, v2} = {v2, v1} If we are talking about directed graphs, where edges have direction. This means that {v1,v2} ≠ {v2,v1} . Directed graphs are drawn with arrows (called arcs) between edges. This means {A,B} only, not {B,A} A B

Graph Representation Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways. Adjacency Matrix Use a 2D matrix to represent the graph Adjacency List Use a 1D array of linked lists

Adjacency Matrix 2D array A[0..n-1, 0..n-1], where n is the number of vertices in the graph Each row and column is indexed by the vertex id e,g a=0, b=1, c=2, d=3, e=4 A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i][j]=0 The storage requirement is Θ(n2). It is not efficient if the graph has few edges. An adjacency matrix is an appropriate representation if the graph is dense: |E|=Θ(|V|2) We can detect in O(1) time whether two vertices are connected.

Adjacency List If the graph is not dense, in other words, sparse, a better solution is an adjacency list The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph. Each array entry is indexed by the vertex id Each list A[i] stores the ids of the vertices adjacent to vertex i

Adjacency Matrix Example 1 2 3 4 5 6 7 8 9 2 4 3 5 1 7 6 9 8

Adjacency List Example 1 2 3 4 5 6 7 8 9 8 2 4 3 5 1 7 6 9 8 2 3 7 9 1 4 8 1 4 5 2 3 3 6 5 7 1 6 2 9 1 8

Storage of Adjacency List The array takes up Θ(n) space Define degree of v, deg(v), to be the number of edges incident to v. Then, the total space to store the graph is proportional to: An edge e={u,v} of the graph contributes a count of 1 to deg(u) and contributes a count 1 to deg(v) Therefore, Σvertex vdeg(v) = 2m, where m is the total number of edges In all, the adjacency list takes up Θ(n+m) space If m = O(n2) (i.e. dense graphs), both adjacent matrix and adjacent lists use Θ(n2) space. If m = O(n), adjacent list outperforms adjacent matrix However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix More compact than adjacency matrices if graph has few edges Requires more time to find if an edge exists Adjacency Matrix Always require n2 space This can waste a lot of space if the number of edges are sparse Can quickly find if an edge exists It’s a matrix, some algorithms can be solved by matrix computation!

Path between Vertices A path is a sequence of vertices (v0, v1, v2,… vk) such that: For 0 ≤ i < k, {vi, vi+1} is an edge For 0 ≤ i < k-1, vi ≠ vi+2 That is, the edge {vi, vi+1} ≠ {vi+1, vi+2} Note: a path is allowed to go through the same vertex or the same edge any number of times! The length of a path is the number of edges on the path

Types of paths A path is simple if and only if it does not contain a vertex more than once. A path is a cycle if and only if v0= vk The beginning and end are the same vertex! A path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples Are these paths? Any cycles? What is the path’s length? {a,c,f,e} {a,b,d,c,f,e} {a, c, d, b, d, c, f, e} {a,c,d,b,a} {a,c,f,e,b,d,c,a}

Summary A graph G=(V, E) consists a set of vertices, V, and a set of edges, E. Each edge is a pair of (v, w), where v, w belongs to V graph, directed and undirected graph vertex, node, edge, arc incident, adjacent degree, in-degree, out-degree, isolated path, simple path, path of length k, subpath cycle, simple cycle, acyclic connected, connected component neighbor, complete graph, planar graph

Graph Traversal Application example Given a graph representation and a vertex s in the graph Find all paths from s to other vertices Two common graph traversal algorithms Breadth-First Search (BFS) Find the shortest paths in an unweighted graph Depth-First Search (DFS) Topological sort Find strongly connected components

BFS and Shortest Path Problem Given any source vertex s, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices What do we mean by “distance”? The number of edges on a path from s From ‘local’ to ‘global’, step by step. Example 2 4 3 5 1 7 6 9 8 Consider s=vertex 1 2 Nodes at distance 1? 2, 3, 7, 9 1 s Nodes at distance 2? 8, 6, 5, 4 Nodes at distance 3?

BFS Algorithm // flag[ ]: visited table Why use queue? Need FIFO

BFS Example Adjacency List Visited Table (T/F) 2 4 3 5 1 7 6 9 8 1 2 3 4 5 6 7 8 9 F 2 4 3 5 1 7 6 9 8 source Initialize visited table (all False) { } Q = Initialize Q to be empty

Place source 2 on the queue Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 F T 2 4 3 5 1 7 6 9 8 source Flag that 2 has been visited { 2 } Q = Place source 2 on the queue

Place all unvisited neighbors of 2 on the queue Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 F T 2 4 3 5 1 7 6 9 8 Neighbors source Mark neighbors as visited 1, 4, 8 Q = {2} → { 8, 1, 4 } Dequeue 2. Place all unvisited neighbors of 2 on the queue

-- Place all unvisited neighbors of 8 on the queue. Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F 2 4 3 5 1 7 6 9 8 source Neighbors Mark new visited Neighbors 0, 9 { 8, 1, 4 } → { 1, 4, 0, 9 } Q = Dequeue 8. -- Place all unvisited neighbors of 8 on the queue. -- Notice that 2 is not placed on the queue again, it has been visited!

-- Place all unvisited neighbors of 1 on the queue. Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F 2 4 3 5 1 7 6 9 8 Neighbors source Mark new visited Neighbors 3, 7 { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } Q = Dequeue 1. -- Place all unvisited neighbors of 1 on the queue. -- Only nodes 3 and 7 haven’t been visited yet.

-- 4 has no unvisited neighbors! Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F 2 4 3 5 1 7 6 9 8 Neighbors source { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } Q = Dequeue 4. -- 4 has no unvisited neighbors!

-- 0 has no unvisited neighbors! Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F Neighbors 2 4 3 5 1 7 6 9 8 source { 0, 9, 3, 7 } → { 9, 3, 7 } Q = Dequeue 0. -- 0 has no unvisited neighbors!

-- 9 has no unvisited neighbors! Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F 2 4 3 5 1 7 6 9 8 source Neighbors { 9, 3, 7 } → { 3, 7 } Q = Dequeue 9. -- 9 has no unvisited neighbors!

-- place neighbor 5 on the queue. Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T F 2 4 3 5 1 7 6 9 8 Neighbors source Mark new visited Vertex 5 { 3, 7 } → { 7, 5 } Q = Dequeue 3. -- place neighbor 5 on the queue.

-- place neighbor 6 on the queue Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T 2 4 3 5 1 7 6 9 8 source Neighbors Mark new visited Vertex 6 { 7, 5 } → { 5, 6 } Q = Dequeue 7. -- place neighbor 6 on the queue

-- no unvisited neighbors of 5 Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T 2 4 3 5 1 7 6 9 8 source Neighbors { 5, 6} → { 6 } Q = Dequeue 5. -- no unvisited neighbors of 5

-- no unvisited neighbors of 6 Adjacency List Visited Table (T/F) 1 2 3 4 5 6 7 8 9 T 2 4 3 5 1 7 6 9 8 source Neighbors { 6 } → { } Q = Dequeue 6. -- no unvisited neighbors of 6

STOP!!! Q is empty!!! Adjacency List Visited Table (T/F) 2 4 3 5 1 7 6 1 2 3 4 5 6 7 8 9 T 2 4 3 5 1 7 6 9 8 source What did we discover? Look at “visited” tables. There exists a path from source vertex 2 to all vertices in the graph { } Q = STOP!!! Q is empty!!!

Time Complexity of BFS (Using Adjacency List) Assume adjacency list n = number of vertices m = number of edges O(n + m) Each vertex will enter Q at most once. Each iteration takes time proportional to deg(v) + 1 (the number 1 is to account for the case where deg(v) = 0 --- the work required is 1, not 0).

Running Time Recall: Given a graph with m edges, what is the total degree? The total running time of the while loop is: this is summing over all the iterations in the while loop! Σvertex v deg(v) = 2m O( Σvertex v (deg(v) + 1) ) = O(n+m)

Time Complexity of BFS (Using Adjacency Matrix) Assume adjacency list n = number of vertices m = number of edges O(n2) Finding the adjacent vertices of v requires checking all elements in the row. This takes linear time O(n). Summing over all the n iterations, the total running time is O(n2). So, with adjacency matrix, BFS is O(n2) independent of the number of edges m. With adjacent lists, BFS is O(n+m); if m=O(n2) like in a dense graph, O(n+m)=O(n2).