ESS 261Multi-Instrument/Spacecraft 1 Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review: SST cleanup, MHD Electric.

Slides:



Advertisements
Similar presentations
Evidence at Saturn for an Inner Magnetospheric Convection Pattern, Fixed in Local Time M. F. Thomsen (1), R. L. Tokar (1), E. Roussos (2), M. Andriopoulou.
Advertisements

Single particle motion and trapped particles
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Further development of modeling of spatial distribution of energetic electron fluxes near Europa M. V. Podzolko 1, I. V. Getselev 1, Yu. I. Gubar 1, I.
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
Five Spacecraft Observations of Oppositely Directed Exhaust Jets from a Magnetic Reconnection X-line Extending > 4.3 x 10 6 km in the Solar Wind Gosling.
Solar wind-magnetosphere coupling Magnetic reconnection In most solar system environments magnetic fields are “frozen” to the plasma - different plasmas.
Utilizing CISM MHD Results in SEP Modeling S. A. Ledvina, D. Odstrcil, J. G. Luhmann, D. Krauss-Varban, and I. Roth.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
ESS 7 Lectures 10, 11 and 12 October 22, 24, and 27 The Magnetosphere.
What role do energetic particles present in the dayside cusp play in magnetospheric processes? THEODORE A. FRITZ Center for Space Physics at Boston University.
Introduction to Space Weather
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
OXYGEN ION ACCELERATION AND CONVECTION IN THE POLAR MAGNETOSPHERE B. Klecker for the CLUSTER Team at MPE G. Paschmann, B. Klecker, M. Förster, H. Vaith,
The Magnetopause Back in 1930 Chapman and Ferraro foresaw that a planetary magnetic field could provide an effective obstacle to the solar-wind plasma.
Computational Model of Energetic Particle Fluxes in the Magnetosphere Computer Systems Yu (Evans) Xiang Mentor: Dr. John Guillory, George Mason.
Nowcast model of low energy electrons (1-150 keV) for surface charging hazards Natalia Ganushkina Finnish Meteorological Institute, Helsinki, Finland.
Large-Amplitude Electric Fields Associated with Bursty Bulk Flow Braking in the Earth’s Plasma Sheet R. E. Ergun et al., JGR (2014) Speaker: Zhao Duo.
1 The Inner Magnetosphere Nathaniel Stickley George Mason University.
The role of the magnetodisk in the Jupiter's Magnetosphere Igor I. Alexeev 2MS3, 14:20-14:40 October 13th, 2011, SRI, Moscow1.
The dayside magnetopause in the spring of 2004: A case study and a statistical report A. Blăgău (1, 2), B. Klecker (1), G. Paschmann (1), M. Scholer (1),
Kinetic-scale electric field structures at plasma boundaries in the inner magnetosphere (including injection fronts) David Malaspina 1, John Wygant 2,
Адиабатический нагрев электронов в хвосте магнитосферы. Физика плазмы в солнечной системе» февраля 2012 г., ИКИ РАН Зеленый Л.М., Артемьев А.В.,
THEMIS/SRR ESA- 1 UCB, 06/08/2003 THEMIS Electrostatic Analyzer (ESA) instrument David W. Curtis Space Sciences Laboratory University of California, Berkeley.
THEMIS SRR 1 UCB, June 8-9, 2003 Solid State Telescope Davin Larson SSL.
1 THEMIS Inner Magnetosphere Review, Dec 20, 2008 Summary of THEMIS results in the inner magnetosphere Future mission operations discussion: –Science targets.
ESS 261Energetic Particles1 Energetic Particles & Boundary Remote Sensing Energetic Particle Instruments: Operation and Data Products Geometric Factor.
Scott Thaller Van Allen Probes EFW meeting University of Minnesota June 10-12, 2014.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
E.E. Antonova1,2, I.P. Kirpichev2,1, Yu.I. Yermolaev2
1 MAVEN PFP ICDR May 23-25, 2011 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Particles and Fields Science Critical Design Review May ,
Simultaneous in-situ observations of the feature of a typical FTE by Cluster and TC1 Zhang Qinghe Liu Ruiyuan Polar Research Institute of China
PARTICLES IN THE MAGNETOSPHERE
Catalogued parameters… Current sheet normal vector and velocity, derived using a timing analysis. Later used to calculate an accurate measure of current.
Adjustable magnetospheric event- oriented magnetic field models N. Yu. Ganushkina (1), M. V. Kubyshkina (2), T. I. Pulkkinen (1) (1) Finnish Meteorological.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
Global MHD Simulation with BATSRUS from CCMC ESS 265 UCLA1 (Yasong Ge, Megan Cartwright, Jared Leisner, and Xianzhe Jia)
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
17th Cluster workshop Uppsala, Sweden , May 12-15, 2009
A shock is a discontinuity separating two different regimes in a continuous media. –Shocks form when velocities exceed the signal speed in the medium.
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
ESS 265Time Series Analysis1 Time Series Analysis of Particles and Fields data Magnetopause sounding Materials in:
Magnetospheric Current System During Disturbed Times.
SST- Solid State Telescope ESA - Electrostatic Analyzer Science Measurement and Operational Requirements.
The effects of the solar wind on Saturn’s space environment
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Cluster Active Archive Science User Working Group (CAASUWG) - update Matt Taylor on behalf of CAASUWG.
On-Line Visualization Ring Current / Radiation Belt.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Chapman Conference “Fundamental Properties and Processes of Magnetotails” 12 March 2013, Tuesday, p.m. Structure of Magnetic Reconnection in the.
1. What controls the occurrence of reconnection. 2
ESS 154/200C Lecture 15 The Inner Magnetosphere II
The Magnetosphere Feifei Jiang, UCLA
The Magnetopause Back in 1930 Chapman and Ferraro foresaw that a planetary magnetic field could provide an effective obstacle to the solar-wind plasma.
Time Series Analysis of Particles and Fields data
Single particle motion and trapped particles
THEMIS multi-spacecraft observations of a 3D magnetic
Databases for THEMIS and GEOTAIL Magnetopause Crossings at GSFC
Observations of Electrons Accelerated Upwards
Introduction to Space Weather
Solar Wind-Magnetosphere Interaction: Reconnection and IMF Dependence
ESS261, Spring 2009, Final, Due noon on 2009/06/10
Magnetic reconnection X-line crossing by THEMIS-B on February 7, 2009
THEMIS Dayside Lessons learned from the coast phase and the 1st dayside season Current plans for the 2nd dayside season and the extended phases.
Richard B. Horne British Antarctic Survey Cambridge UK
Fields Data Analysis Introduce Data Transform Data Manipulate data:
Homework #7, Due June 3rd Find a THEMIS interval of interest to your research. Read the thm_sst_cleanup.pro and crib_sst_contamination.pro routines. Plot.
Magnetosphere: Structure and Properties
Presentation transcript:

ESS 261Multi-Instrument/Spacecraft 1 Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review: SST cleanup, MHD Electric Field from Particle Velocity Total Density Computation from Various Sources Total Pressure ESS 261 Spring Quarter 2009 Lecture 05 May 27, 2009

ESS 261Multi-Instrument/Spacecraft 2 Finite gyroradius techniques Ion Gyroradius large compared to magnetospheric boundaries –Can be used to remotely sense speed and thickness of boundaries –Assumption is that boundary is sharp and flux has step function across Application at the magnetopause Application at the magnetotail –Can also be applied to waves if particle gradient is sufficiently high Application on ULF waves at inner magnetosphere Method exploits finite ion gyroradius to remotely sense approaching ion boundary and measure boundary speed (V ⊥ ) THEMIS To Earth To Sun To Tail

ESS 261Multi-Instrument/Spacecraft 3 At the magnetotail  i,thermal-tail (4keV,20nT) =~325km  i,super-thermal (50keV,20nT) =~2200km Plasma Sheet Thickness ~ 1-3 R E Boundary Layer Thickness ~ km Current layer Thickness~ km Waves Across Boundary: ~ ,000km Along Boundary: ~Normal : 1-10 R E For magnetotail particles, the current layer and plasma sheet boundary layer are sharp compared to the superthermal ion gyroradius and the magnetic field is the same direction in the plasma sheet and outside (the lobe). This means we can use the measured field to determine gyrocenters both at the outer plasma sheet and the lobe, on either side of the hot magnetotail boundary.

ESS 261Multi-Instrument/Spacecraft 4 Side View (elevations) To Sun Spin Axis ESA: Elevation direction (  DSL ) SST: Elevation direction (  DSL ) 25 o 52 o -25 o -52 o o o

ESS 261Multi-Instrument/Spacecraft 5 Top View (sectors) For ESA and SST (0=Sun) Spin motion direction (  DSL ) o o To Sun (0 o ) Spin axis Normal to Sun, +90 o

ESS 261Multi-Instrument/Spacecraft 6 Particle motion direction Coordinate: (  DSL ) Energy: keV Note: direction depends on spin axis. B field azimuth (solid white) -B field azimuth (dashed white) You care to time this! (+/- 90 o to Bfield azimuth)

ESS 261Multi-Instrument/Spacecraft 7 Multiple spacecraft, energies, elevations A B D E …. Elev: 25deg E=30-50keVElev: 25deg, E=80-120keV

ESS 261Multi-Instrument/Spacecraft 8 Vi_const 310km/sec/keV fci_cons Hz/nT B 30nT Ti 40keV rho_ion 683km Ti 100keV rho_ion 1081km Ti 150keV rho_ion 1323km Ti 300keV rho_ion 1872km SC E (keV) detectord (deg) r time B 40 SPW :19:29 B 40 SPE :19:39 B 40 SEW :19:18 B 40 SEE :19:42 B 40 NPW :19:29 B 40 NPE :19:38 B 40 NEW :19:24 B 40 NEE :19:43 B 100 SPW :19:17 B 100 SPE :19:42 B 100 SEW :19:20 B 100 SEE :19:45 B 100 NPW :19:20 B 100 NPE :19:45 B 100 NEW :19:23 B 100 NEE :19:48 B 150 SPW :19:10 B 150 SPE :19:44 B 150 SEW :19:14 B 150 SEE :19:51 B 150 NPW :19:23 B 150 NPE :19:45 B 150 NEW :19:13 B 150 NEE :19:48 B 300 SPW :19:10 B 300 SPE :19:44 B 300 SEW :19:14 B 300 SEE :19:51 B 300 NPW :19:23 B 300 NPE :19:45 B 300 NEW :19:13 B 300 NEE :19:48 Note: NEE= North-Equatorial, East NPW=North-Equatorial, West Angles measured from East direction -25deg elevation, 90deg East = SEE +52deg elevation, 90deg East = NPE … Spin axis B NPW NEW SEW SPW NPE NEE SEE SPE Boundary

ESS 261Multi-Instrument/Spacecraft 9 Spin axis B NPW NEW SEW SPW NPE NEE SEE SPE Boundary V: NEE Part. direction Hot/dense plasma Cold/tenuous plasma Y Z GC NEE n Y   Y n Show: d=  *sin(  -  ) Note: d negative if moving towards spacecraft  d SC

ESS 261Multi-Instrument/Spacecraft 10 Procedure –For a given , determine variance of data for all  –Find minimum in variance, this determines  (boundary direction) –Speed distance as function of time determines boundary speed –intro_ascii,'remote_sense_A.txt',delta,rho,hh,mm,ss,nskip=13,format="(25x,f6.1,f8.1,3(1x,i2))" –; –angle=fltarr(73) –chisqrd=fltarr(73) –for ijk=0,72 do begin – epsilon=float(ijk*5) – get_d_vs_dt,epsilon,hh,mm,ss,rho,delta,dist,times – yfit=dist & yfit(*)=0. – chi2=dist & chi2(*)=0. – coeffs=svdfit(times,dist,2,yfit=yfit,chisq=chi2) – angle(ijk)=epsilon – chisqrd(ijk)=chi2 –endfor –ipos=indgen(30)+43 –chisqrd_min=min(chisqrd(ipos),imin) –plot,angle,chisqrd –print,angle(ipos(imin)),chisqrd(ipos(imin)) –; –stop

ESS 261Multi-Instrument/Spacecraft km V ~ 70km/s Z Y D B A Procedure –Note two minima (identical solutions) One for approaching boundary at V>0 One for receding boundary at V<0 –Convention that d<0 if boundary moves towards spacecraft allows us to pick one of the two (positive slope of d versus time)

ESS 261Multi-Instrument/Spacecraft 12 t cross V [km/s]  [deg] D 11:19: B11:19: A11:19: Table 1. Results of remote sensing analysis on the inner probes Timing of the arrivals of the other signatures at the inner three spacecraft

ESS 261Multi-Instrument/Spacecraft 13 At the magnetopause  i,sheath (0.5keV,10nT) =~200km  i,m-sphere (10keV,10nT) =~1000km Magnetopause Thickness ~ 6000km Current layer Thickness~ 500km FTE scale, Normal 2 Boundary: ~6000km Along Boundary: ~Normal : 1-3 R E For leaking magnetospheric particles, the current layer is sharp compared to the ion gyroradius and the magnetic field is the same direction in the sheath and the magnetopause outside the current layer. This means we can use the measured field outside the magnetopause to determine gyrocenters both at the magnetopause and the magnetosheath on either side of the hot magnetopause boundary.

ESS 261Multi-Instrument/Spacecraft 14 Magnetopause encounter on July 12, 2007 Magnetic field angle is 60deg below spin plane and +120deg in azimuth i.e., anti-Sunward and roughly tangent to the magnetopause. The particle velocities, centered at 52deg above the spin plane, have roughly 90 o pitch angles, with gyro-centers that were on the Earthward side of the spacecraft. The energy spectra of the NP particles show clearly the arrival of the FTE ahead of its magnetic signature, remotely sensing its arrival due to the finite gyroradius effect of the energetic particles.  T=55s,   i,100keV, 28nT) =1150km, V=40km/s

ESS 261Multi-Instrument/Spacecraft 15 At the near-Earth magnetosphere

ESS 261Multi-Instrument/Spacecraft 16 At the near-Earth magnetosphere

ESS 261Multi-Instrument/Spacecraft 17 At the near-Earth magnetosphere timespan,' /10',2,/hours & sc='a' thm_load_state,probe=sc,/get_supp thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm' thm_load_mom,probe=sc ; L2: onboard processed moms thm_load_esa,probe=sc ; L2: gmoms, omni spectra tplot,'tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' ; trange=[' /11:00',' /11:30'] thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $ pitch=[45,135], other_dim='mPhism', $ ; /normalize, $ data_type=['peir'], regrid=[32,16] tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' Remote sensing of waves in ESA data, at the most appropriate coordinate System, I.e, field aligned coordinates. gyro=0 o => Earthward particles

ESS 261Multi-Instrument/Spacecraft 18 At the near-Earth magnetosphere trange=[' /11:00',' /11:30'] thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $ pitch=[45,135], other_dim='mPhism', $ /normalize, $ data_type=['peir'], regrid=[32,16] tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' Same as before but using keyword: /normalize I.e., anisotropy is normalized to 1, to ensure flux variations do not affect anisotropy calculation.

ESS 261Multi-Instrument/Spacecraft 19 Clean up SST, ESA, EFI measurements [1] Preliminary Tasks –SST: Sun contamination removal (see Lecture 08) –ESA: background noise removal (mostly in tail, inner magnetosphere) –ESA: watch-out for cold ions (via total density, spectra, mostly dayside) –EFI: remove offsets, watch-out for cold ion wake (via waveforms) –Obtain partial moments, add them, compare with scpot-density –Ready for further analysis

ESS 261Multi-Instrument/Spacecraft 20

ESS 261Multi-Instrument/Spacecraft 21

ESS 261Multi-Instrument/Spacecraft 22 Preliminary Tasks [clean SST] –timespan,' /03',3,/hours –sdate=time_double(' /03:00:00') –edate=time_double(' /06:00:00') –trange=[sdate,edate] –; –eVpercc_to_nPa=0.1602/1000. ; multiply –nTesla2_to_nPa=0.01/ ; multiply –; –thm_load_state,/get_supp –thm_load_fgm,probe='e',coord='dsl gsm' –thm_load_sst,probe='e' ; reads L1 SST data –thm_load_esa,probe='e' ; reads L2 ESA data –; –; Clean up SST data –sc='e' –thm_part_getspec, probe=sc,trange=trange, $ – theta=[-45,0],data_type=['psif','psef'],angle=phi,suff='_m45'$ –, erange=[25000,100000] –thm_part_getspec, probe=sc,trange=trange, $ – theta=[-90,0],data_type=['psif','psef'],angle=phi,suff='_m90'$ –, erange=[25000,100000] –thm_part_getspec, probe=sc,trange=trange, $ – theta=[0,45],data_type=['psif','psef'],angle=phi,suff='_p45'$ –, erange=[25000,100000] –thm_part_getspec, probe=sc,trange=trange, $ – theta=[45,90],data_type=['psif','psef'],angle=phi,suff='_p90'$ –, erange=[25000,100000] –example of plotting spectra as lines –options,'th'+sc+'_ps?f_an_eflux_phi*',spec=0 ; line plot: spec=0, spectra: spec=1 –ylim,'th'+sc+'_ps?f_an_eflux_phi*',1.e-5,1.e-5,1 –tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title='Line plot' –tplot,'th'+sc+'_ps?f_an_eflux_phi*' –; –; replot as spectra –options,'th'+sc+'_ps?f_an_eflux_phi*',spec=1 ; line plot: spec=0, spectra: spec=1 –tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title=' ' –ylim,'th'+sc+'_ps?f_an_eflux_phi*',0,360,0 –tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*' –tplot,/pick

ESS 261Multi-Instrument/Spacecraft 23 Preliminary Tasks [clean SST #2] –; SST Ions only enough, no need for electrons now –; –edit3dbins,thm_sst_psif(probe=sc, gettime(/c)), ibins –print,ibins –tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*' –t1=time_double(' /03:15:00') –t2=time_double(' /03:18:00') –times=[t1,t2] –; –thm_part_getspec, probe=sc,$ – theta=[-45,0],data_type=['psif'],angle=phi,suff='_m45c'$ –, erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times –thm_part_getspec, probe=sc,$ – theta=[-90,0],data_type=['psif'],angle=phi,suff='_m90c'$ –, erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times –thm_part_getspec, probe=sc,$ – theta=[0,45],data_type=['psif'],angle=phi,suff='_p45c'$ –, erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times –thm_part_getspec, probe=sc,$ – theta=[45,90],data_type=['psif'],angle=phi,suff='_p90c'$ –, erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times –thm_part_moments,probe=probe,instrum=['psif'] $ –,/mask_remove,fillin_method='interpolation'$ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times $ –, /scale_sphere –thm_part_getspec, probe=sc $ –, data_type=['psif'],/energy $ –,/mask_remove,fillin_method='interpolation' $ –, method_sunpulse_clean='median' $ –, enoise_bins=ibins, enoise_bgnd_time=times $ –ylim,'th'+sc+'_psif_density',1.e-5,1.e-5,1 –ylim,'th'+sc+'_psif_velocity',0,0,0 –ylim,'th'+sc+'_psif_t3',1.e-5,1.e-5,1 –; –tplot,'the_psif_density the_psif_velocity the_psif_t3 the_psif_en_eflux th'+sc+'_psif_an_eflux_phi_???c'

ESS 261Multi-Instrument/Spacecraft 24

ESS 261Multi-Instrument/Spacecraft 25 Recompute ESA moments, using reworked sc_pot –tplot,'the_pxxm_pot',/add –get_data,'the_pxxm_pot',data=the_pxxm_pot –the_pxxm_pot.y=(the_pxxm_pot.y+1.)*1.15 ; correct for sphere bias and shielding –store_data,'the_pxxm_pot1',data={x:the_pxxm_pot.x,y:the_pxxm_pot.y} –thm_load_esa_pkt,probe='e' –thm_part_moments,probe=sc,instrum=['peir', 'peer'],scpot_suffix='_pxxm_pot1',tplotsuffix='_norm',trange=[sdate,edate] –; –; recompute total density, velocity, temperature –sst_scale=1. –; –; density –; –tinterpol_mxn,'the_psif_density','the_peir_density_norm',suff='_int' –calc,'"the_psif_density_int" = sst_scale*"the_psif_density_int"' –add_data,'the_psif_density_int','the_peir_density_norm',newname='the_ptim_density_new' –;

ESS 261Multi-Instrument/Spacecraft 26 Recompute ESA mom’s, using reworked sc_pot [2] –; –; velocity –; –tinterpol_mxn,'the_psif_velocity','the_peir_density_norm',suff='_int' –get_data,'the_psif_density_int',data=the_psif_density_int –get_data,'the_psif_velocity_int',data=the_psif_velocity_int –get_data,'the_peir_density_norm',data=the_peir_density_norm –get_data,'the_peir_velocity_norm',data=the_peir_velocity_norm –get_data,'the_ptim_density_new',data=the_ptim_density_new –vel_tot_0=(the_psif_density_int.y*the_psif_velocity_int.y(*,0)+ $ – the_peir_density_norm.y*the_peir_velocity_norm.y(*,0) ) / $ – the_ptim_density_new.y –vel_tot_1=(the_psif_density_int.y*the_psif_velocity_int.y(*,1)+ $ – the_peir_density_norm.y*the_peir_velocity_norm.y(*,1) ) / $ – the_ptim_density_new.y –vel_tot_2=(the_psif_density_int.y*the_psif_velocity_int.y(*,2)+ $ – the_peir_density_norm.y*the_peir_velocity_norm.y(*,2) ) / $ – the_ptim_density_new.y –store_data,'the_ptim_velocity_new',data={x:the_peir_density_norm.x, $ – y:[[vel_tot_0],[vel_tot_1],[vel_tot_2]]} –options,'the_ptim_velocity_new',colors=[2,4,6] –;

ESS 261Multi-Instrument/Spacecraft 27 Recompute ESA mom’s, using reworked sc_pot [3] –; pressure and temperature –; –tinterpol_mxn,'the_psif_t3','the_peir_density_norm',suff='_int' –get_data,'the_psif_t3_int',data=the_psif_t3_int –get_data,'the_peir_t3_norm',data=the_peir_t3_norm –get_data,'the_peer_t3_norm',data=the_peer_t3_norm –press_tot=the_psif_density_int.y*total(the_psif_t3_int.y,2)/3 + $ – the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3 –store_data,'the_ptim_pressure_new',data={x:the_peir_density_norm.x, $ – y:press_tot} –store_data,'the_psif_pressure_int',data={x:the_peir_density_norm.x, $ – y:the_psif_density_int.y*total(the_psif_t3_int.y,2)/3} –store_data,'the_peir_pressure_norm',data={x:the_peir_density_norm.x, $ – y:the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3} –div_data,'the_ptim_pressure_new','the_ptim_density_new',newname='the_ptim_temperature_new' –store_data,'the_peer_pressure_norm',data={x:the_peir_density_norm.x, $ – y:the_peir_density_norm.y*total(the_peer_t3_norm.y,2)/3} –;

ESS 261Multi-Instrument/Spacecraft 28 Recompute ESA mom’s, using reworked sc_pot [4] –; –; Plot 'em –; –store_data,'the_N_combo',data='the_psif_density_int the_peir_density_norm the_ptim_density_new' –store_data,'the_P_combo',data='the_psif_pressure_int the_peir_pressure_norm the_ptim_pressure_new' –ylim,'the_p???_pressure_*',1.e-5,1.e-5,1 –store_data,'the_pxix_en_eflux',data='the_psif_en_eflux the_peir_en_eflux' –ylim,'the_pxix_en_eflux',3.,3.e6,1 –zlim,'the_pxix_en_eflux',50,1.e7,1 –store_data,'the_peer_en_eflux_pot',data='the_peer_en_eflux the_pxxm_pot1' –ylim,'the_peer_en_eflux_pot',5.,3.e4,1 –; –tplot,'the_N_combo the_peir_velocity_norm the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot' –;

ESS 261Multi-Instrument/Spacecraft 29

ESS 261Multi-Instrument/Spacecraft 30 Compare E-field with EFI and compute Ptotal –; Introduce B & E field; compute Ez from E*B=0 –; –thm_load_fit,probe=sc,coord='dsl',suff='_dsl' –get_data,'the_efs_0',data=the_efs_0 –i2average=where((the_efs_0.x gt time_double(' /04:45:00')) and $ – the_efs_0.x lt time_double(' /04:48:00'),iany) –print,'this is the estimated Exoffset: ', average(the_efs_0.y(i2average,0)) –print,'this is the estimated Eyoffset: ', average(the_efs_0.y(i2average,1)) –Exoffset= –Eyoffset= –; –angle=10. ; degrees –tanangle=tan(angle*!PI/180.) –get_data,'th'+sc+'_efs_0',data=thx_efs_dsl –get_data,'th'+sc+'_fgs',data=thx_fgs_dsl –igood=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) ge tanangle,janygood) –ibad=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) lt tanangle,janybad) –thx_efs_dsl.y(*,0)=thx_efs_dsl.y(*,0)-Exoffset & thx_efs_dsl.y(*,1)=thx_efs_dsl.y(*,1)-Eyoffset –thx_efs_dot0_dsl=thx_efs_dsl –; –if (janybad ge 1) then thx_efs_dot0_dsl.y(ibad,*)=!VALUES.F_NAN –if (janygood lt 1) then print,'*****WARNING: NO GOOD 3D ExB data' –if (janygood ge 1) then thx_efs_dot0_dsl.y(igood,2)= -(thx_efs_dsl.y(igood,0)*thx_fgs_dsl.y(igood,0)+$ – thx_efs_dsl.y(igood,1)*thx_fgs_dsl.y(igood,1)+ thx_efs_dsl.y(igood,2)*thx_fgs_dsl.y(igood,2))/ thx_fgs_dsl.y(igood,2) –; –thx_exb_dot0_dsl=thx_efs_dot0_dsl –store_data,'th'+sc+'_efs_dot0_dsl',data={x:thx_efs_dot0_dsl.x,y:thx_efs_dot0_dsl.y} –options,'th'+sc+'_efs_dot0_dsl','colors',[2,4,6] ;

ESS 261Multi-Instrument/Spacecraft 31 Compare E-field with EFI –; Produce E from Vi x B, to compare –; –tinterpol_mxn,'the_fgs','the_peir_density_norm',suff='_int' ; get same time res. –tcrossp,'th'+sc+'_ptim_velocity_new','th'+sc+'_fgs_int',newname='the_Evxb_dsl_temp' –calc,'"the_Evxb_dsl" = *"the_Evxb_dsl_temp"' –options,'the_Evxb_dsl',colors=[2,4,6] & ylim,'the_Evxb_dsl the_efs_dot0_dsl',-20,20,0 –; –tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot' –; –; Add total ion, electron and magnetic pressure to create total pressure –; –calc,'"the_Pi" = (0.1602/1000.) * "the_ptim_pressure_new"' ; ESA+SST ions in nPa –calc,'"the_Pe" = (0.1602/1000.) * "the_peer_pressure_norm"'; ESA electrons in nPa –tinterpol_mxn,'the_fgs_dsl','the_peir_density_norm',suff='_int' ; on common time –tvectot,'the_fgs_dsl_int',tot='the_fgs_mag' –calc,'"the_Pb" = (0.01/ ) * "the_fgs_mag" * "the_fgs_mag" ' ; Pb in nPa –; –calc,'"the_Pt" = "the_Pi" + "the_Pe" + "the_Pb" ' ; Ptotal in nPa –; –store_data,'the_Pall',data='the_Pi the_Pe the_Pb the_Pt' ; single variable to plot –ylim,'the_P? the_Pall',0.005,1,1 –; –tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_Pall the_pxix_en_eflux the_peer_en_eflux_pot' –;

ESS 261Multi-Instrument/Spacecraft 32

ESS 261Multi-Instrument/Spacecraft 33 February 16, 2008 event: Moments computation after SST cleanup

ESS 261Multi-Instrument/Spacecraft 34 February 16, 2008 event: ExB comparison