Submission doc.: IEEE 802.11-15/0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 1 Throughput Comparison of Some Multi-user Schemes in 802.11ax Date:

Slides:



Advertisements
Similar presentations
Submission doc.: IEEE 11-14/0802r0 Consideration on UL MU transmission Date: Slide 1Jinyoung Chun et. al, LG Electronics July 2014 Authors:
Advertisements

Doc.: IEEE /0324r0 Submission Slide 1Michelle Gong, Intel March 2010 DL MU MIMO Error Handling and Simulation Results Date: Authors:
Doc.: IEEE /0567r0 Submission Slide 1Michelle Gong, Intel May 2010 DL MU MIMO Analysis and OBSS Simulation Results Date: Authors:
Submission doc.: IEEE /1436r0 November 2014 Interdigital CommunicationsSlide 1 Overhead Analysis for Simultaneous Downlink Transmissions Date:
Submission doc.: IEEE /1186r2 September 2014 Pengfei Xia, Interdigital CommunicationsSlide 1 Comparisons of Simultaneous Downlink Transmissions.
Doc.: IEEE /1190r2 September 2014 Submission Kaiying Lv (ZTE) Frame Exchange Control for Uplink Multi-user transmission Slide 1 Date:
Submission doc.: IEEE /0091r1 January 2015 Woojin Ahn, Yonsei UniversitySlide 1 UL-OFDMA procedure in IEEE ax Date: Authors:
Submission doc.: IEEE /1225r1 Considerations on CCA for OBSS Opearation in ax Date: Slide 1Huawei Authors:
11ac: 5G WiFi The trigger for 5GHz everywhere Led by Apple and other consumer specialists – In-home device sync, video, backup, etc – “Gigabit WiFi” on.
Submission doc.: IEEE /1447r1 Nov 2014 John Son, WILUS InstituteSlide 1 Proposed Spec Framework Document for 11ax considering potential tech features.
Beamformed HE PPDU Date: Authors: May 2015 Month Year
Submission doc.: IEEE /0608r1 May 2015 Tomoko Adachi, ToshibaSlide 1 Regarding trigger frame in UL MU Date: Authors:
Doc.: IEEE /569r0 Submission Performance of 1x, 2x, and 4x HE-LTF May 2015 Slide 1 Date: Authors: Kome Oteri (InterDigital)
Submission doc.: IEEE 11-15/0550r0 May 2015 K. Yunoki and B. Zhao, KDDI R&D Labs.Slide 1 L-Preamble Issues for UL-OFDMA Date: Authors:
Submission doc.: IEEE /0091r0 January 2015 Woojin Ahn, Yonsei Univ.Slide 1 UL-OFDMA procedure in IEEE ax Date: Authors:
Submission doc.: IEEE /0376r0 Slide 1Tatsumi Uwai, Radrix co. ltd March 2015 UL-MU MAC Throughput under Non-Full Buffer Traffic Authors: NameAffiliationsAddressPhone .
Multi-STA Block ACK Protection
Doc.: IEEE /568r0 Submission Frequency Selective Scheduling (FSS) for TGax OFDMA May 2015 Slide 1 Date: Authors: Kome Oteri (InterDigital)
Submission doc.: IEEE /0383r0 Impact of number of sub-channels in OFDMA Date: Slide 1Leif Wilhelmsson, Ericsson March 2015 Authors:
DL OFDMA Performance and ACK Multiplexing
Submission doc.: IEEE /1454r1 November 2014 Jarkko Kneckt (Nokia)Slide ax Power Save Discussion Date: Authors:
Doc.: IEEE /1431r1 Submission September 2014 Issues on UL-OFDMA Transmission Date: Authors: Slide 1.
Submission doc.: IEEE /0064r1 January 2015 Tomoko Adachi, ToshibaSlide 1 Consideration on UL-MU overheads Date: Authors:
Doc.: IEEE /1420r1Nov 2014 Submission Po-Kai Huang (Intel) Slide 1 The Impact of Preamble Error on MAC System Performance Date: NameAffiliationsAddressPhone .
Submission doc.: IEEE /0089r1 January 2015 Leonardo Lanante, Kyushu Inst. of Tech.Slide 1 MAC Efficiency Gain of Uplink Multi-user Transmission.
Submission doc.: IEEE /xxxxr0 TaeYoon KIM, Korea University January Discussion on Integrated UL/DL MU-MIMO MAC Date: Authors:
Uplink Multi-User MIMO Protocol Design
Submission doc.: IEEE /0567r0 May 2015 Xiaofei Wang (InterDigital)Slide 1 Multi-STA BA for SU Transmissions Date: Authors:
Submission doc.: IEEE /1452r0 November 2014 Leif Wilhelmsson, EricssonSlide 1 Frequency selective scheduling in OFDMA Date: Authors:
Submission doc.: IEEE /0336r1 March 2015 Xiaofei Wang (InterDigital)Slide 1 MAC Overhead Analysis of MU Transmissions Date: Authors:
Submission doc.: IEEE /1454r0 November 2014 Jarkko Kneckt (Nokia)Slide ax Power Save Discussion Date: Authors:
Submission doc.: IEEE /0868r0 July 2015 Hakan Persson, Ericsson ABSlide 1 Impact of Frequency Selective Scheduling Feedback for OFDMA Date:
Doc.: IEEE /0831r0 Submission July 2010 Yusuke Asai (NTT)Slide 1 Frame Sequence of Interference Management Using Beamforming Technique in OBSS.
Doc.: IEEE /1081r0 SubmissionSayantan Choudhury HEW Simulation Methodology Date: Sep 16, 2013 Authors: Slide 1.
Submission Vida Ferdowsi, NewracomSlide 1 doc.: IEEE /0856r0July 2015 Compressed Uplink Trigger Frame Date: Authors:
Submission doc.: IEEE /1096r0 Sep 2015 John Son et al., WILUSSlide 1 Recovery Procedures in Cascading Sequences Date: Authors: NameAffiliationsAddressPhone .
Doc.: IEEE /1032r1 Submission September 2004 Hiroyuki Nakase, Tohoku Univ.Slide 1 Enhanced MAC proposal for high throughput. Tohoku University.
Submission September 2015 doc.: IEEE /1328r0 November 2015 Yujin Noh, Newracom Slide 1 Scheduling Information for UL OFDMA Acknowledgement Date:
Submission doc.: IEEE /1097r1 September 2015 Narendar Madhavan, ToshibaSlide 1 Reducing Channel Sounding Protocol Overhead for 11ax Date:
Submission doc.: IEEE /1265r1 November 2015 Slide 1 RTS*/CTS* for UL/DL OFDMA Control Date: Authors: NameAffiliationAddressPhone .
Doc.: IEEE /0843r1 July 2015 Submission(ZTE) UL MU Random Access Analysis Date: Slide 1 Authors: NameAffiliationAddress Yonggang.
Submission doc.: IEEE /1129r1 September 2015 Filippo Tosato, ToshibaSlide 1 Feedback overhead in DL-MU-MIMO Date: Authors:
Submission doc.: IEEE /1349r0 November 2015 Sungho Moon, NewracomSlide 1 Sounding for Uplink Transmission Date: Authors:
Doc.: IEEE 11-14/1432r0 Submission Nov Minho Cheong, ETRISlide 1 Proposed ax Specification Framework - Background Date: Authors:
Submission September 2015 doc.: IEEE /1327r0 November 2015 Yujin Noh, Newracom Slide 1 Diversity Mode in OFDMA Date: Authors:
Doc.: IEEE /0066r0 Submission January 2015 Yongho Seok, NEWRACOM Downlink OFDMA Protocol Design Date: Authors: Slide 1.
Doc.: IEEE /0818r1 Submission Further Analysis of Feedback and Frequency Selective Scheduling (FSS) for TGax OFDMA July 2015 Slide 1 Date:
Doc.: IEEE /0806r0 SubmissionSlide 1Young Hoon Kwon, Newracom Protection for MU Transmission Date: Authors: July 2015.
Doc.: IEEE /1057r0 Submission Multiple Resource Unit Allocation for TGax OFDMA Sept 2015 Slide 1 Date: Authors: Kome Oteri (InterDigital)
Submission doc.: IEEE /0376r2 Slide 1Tatsumi Uwai, Radrix co. ltd March 2015 UL-MU MAC Throughput under Non-Full Buffer Traffic Authors: NameAffiliationsAddressPhone .
Doc.: IEEE /0161r1 Submission doc.: IEEE /0806r0 K. Ishihara et al.,(NTT) Slide 1 July 2010 Slide 1 CSI Feedback Scheme using DCT for.
Doc.: IEEE /229r1 Submission March 2004 Alexandre Ribeiro Dias - Motorola LabsSlide 1 Multiple Antenna OFDM solutions for enhanced PHY Presented.
Submission doc.: IEEE /1116r1 September 2015 Jinsoo Ahn, Yonsei UniversitySlide 1 Trigger Frame Channel Access Date: Authors:
Doc.: IEEE /0626r1 Submission Feedback Element Compression for ax May 2016 Slide 1 Date: Authors: Kome Oteri (InterDigital)
Submission doc.: IEEE /0331r1 March 2016 Kome Oteri (InterDigital)Slide 1 Power Control for Multi-User Transmission in ax Date:
Doc.:IEEE /0633r0 Submission Richard van Nee, Qualcomm May 14, 2009 Slide 1 Strawmodel ac Specification Framework Authors: Date:
11ax PAR Verification using UL MU-MIMO
Comparisons of Simultaneous Downlink Transmissions
Scheduling Information for UL OFDMA Acknowledgement
Maximum Tone Grouping Size for ax Feedback
Feedback Element Compression for ax
Frame Exchange Control for Uplink Multi-user transmission
Maximum Tone Grouping Size for ax Feedback
Feedback Element Compression for ax
Maximum Tone Grouping Size for ax Feedback
DL MU MIMO Error Handling and Simulation Results
UL MU Random Access Analysis
Strawmodel ac Specification Framework
Location Measurement Protocol for 11ax
Consideration on System Level Simulation
Presentation transcript:

Submission doc.: IEEE /0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 1 Throughput Comparison of Some Multi-user Schemes in ax Date: Authors:

Submission doc.: IEEE /0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 2 Abstract This contribution provides throughput calculations for some previously proposed MU OFDMA schemes [3, 4] with assumed preamble format, FFT size, MAC header size, and numerology from other previous contributions [1, 5, 6]. These calculations provide a performance comparison of MU- MIMO, OFDMA, and single user transmissions for both uplink and downlink transmissions with varying packet size, SNR and control frame overhead.

Submission doc.: IEEE /0333r0 Table of Contents Introduction Scenarios Considered and Channel Access Schemes Throughput Calculations and Assumptions Results Summary Slide 3Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 Introduction TGax has included MU transmissions in the 11ax Specification Framework Document [7]. TGax has discussed two types of MU transmissions OFDMA and MU-MIMO. This contribution provides a throughput comparison between OFDMA and MU-MIMO for both downlink and uplink MU-transmission. Slide 4Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 Scenarios Being Considered DL Scenarios: SU transmission DL MU-MIMO with simultaneous ACK DL OFDMA with simultaneous ACK UL Scenarios: SU transmission UL MU-MIMO with simultaneous ACK UL OFDMA with simultaneous ACK Slide 5Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 DL-MU User Transmission (MIMO/OFDMA) AP acquires medium using CSMA/CA. AP transmits data to multiple users and receives simultaneous ACK UL/DL Single User Transmission STA/AP acquires medium using CSMA/CA. STA/AP sends data and receives ACK SU and DL-MU Transmissions Slide 6Oghenekome Oteri (InterDigital) March 2015 time UL SU Data Transmission ACK time DL SU Data Transmission ACK time DL MU Data Transmission Simultaneous Block ACK

Submission doc.: IEEE /0333r0 UL MU Transmission (MIMO/OFDMA) Scheme 1: Full Control Frame Exchange 1.Use sequential RTS/CTS [3] or sequential inquiry/response [4] (FrameA/FrameB) exchanges between AP/STAs. AP sends Trigger/Poll frame (Frame C). 2.STAs send data and receive simultaneous block ACK Slide 7Oghenekome Oteri (InterDigital) March 2015 Scheme 2: Short Control Frame Exchange 1.One STA sends RTS (Frame B) and the AP polls the STAs (Frame C) [4] 2.STAs send data and receive simultaneous block ACK time Frame AFrame BFrame C UL MU Data Transmission Simultaneous Block ACK Frame AFrame B... N Frame A / Frame B exchanges N = Number of Users

Submission doc.: IEEE /0333r0 Throughput Calculation DL TxOP Duration MU = Data + SIFS + Simultaneous BA SU = Data + SIFS + ACK UL TxOP Duration MU (scheme 1) = FrameA*N + FrameB*N + FrameC+ Data + SIFS*(2N+2) + BA MU (scheme 2) = FrameB+ FrameC+ DATA + SIFS*3+ BA SU TxOP Duration = Data + SIFS + ACK N = Number of Users Slide 8Oghenekome Oteri (InterDigital) March 2015 Throughput=Data Packet Size/(TXOP + DIFS + BO)*(1-PER)

Submission doc.: IEEE /0333r0 Assumptions 20 MHz channel with 256 FFT Preamble format is from [1] Nt = number of Transmit antennas Slide 9 Oghenekome Oteri (InterDigital) March 2015 ParameterValue Bandwidth20MHz FFT size256 [1] # of data tones234 : 80 MHz 11ac numerology [5] # of pilot tones8 : 80 MHz 11ac numerology [5] GI3.2us [1] DFT period for Data12.8 [1] MAC header size30 Bytes [6] # of antennas at AP side8 # of antennas at STA side1 MAC Frame (A/B/C) SizeCase 1: 25 Bytes, Case 2: 0 Bytes MCSGenie AMC [2] parameter durationBack-off: 3 slots (27 us), DIFS: 34 us L-STFL-LTFL-SIGHE-SIG-AHE-LTF 8us 4us12usNt x 16us Preamble duration 48us Overhead of UL control frames Duration Scheme 1, Case 1880 us Scheme 1, Case 2448 us Scheme 2, Case 1208us Scheme 2, Case 2112us Slide 9

Submission doc.: IEEE /0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 10 Observations Packet size: Large packet: MU-MIMO is the most efficient at high SNR ranges Small packet: OFDMA is the most efficient over entire SNR range SNR: At low SNRs, OFDMA always outperforms MU-MIMO Analysis Results for DL

Submission doc.: IEEE /0333r0 Analysis results for UL, Scheme 1 Slide 11Oghenekome Oteri (InterDigital) March 2015 Observations For Scheme 1 (full control frame exchange), the performance gain over SU transmission is highly dependent on the control frame size. Packet size: Large packet: MU-MIMO (case 2) is the most efficient at high SNR ranges Small packet: OFDMA (case 2) is the most efficient over entire SNR range

Submission doc.: IEEE /0333r0 Analysis results for UL, Scheme 2 Slide 12Oghenekome Oteri (InterDigital) March 2015 Observations For Scheme 2 (short control frame exchange), the performance gain over SU transmission is not as dependent on the control frame size as Scheme 1 Packet size: Large packet: MU-MIMO is most efficient at high SNR ranges Small packet: OFDMA is most efficient over entire SNR operation range

Submission doc.: IEEE /0333r0 Conclusion The control overhead determines the gain of MU over SU transmissions Overhead is a function of the number and size of frames The channel access scheme determines the number. The design of the control information determines the size. Performance of the MU schemes varies with packet size and operating SNR For large packets: MU-MIMO is the most efficient at high SNR ranges For small packet: OFDMA is the most efficient over entire SNR range OFDMA is more efficient than MU-MIMO at low SNRs for all packet sizes Slide 13Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 14 References /0099r4, Broadcom, Payload symbol size for 11ax /1186r2, InterDigital, Comparisons of Simultaneous Downlink Transmissions /1431r1, Newracom, Issues on UL-OFDMA /0064r0, Toshiba, Consideration on UL-MU overheads 5.IEEE P802.11ac™/D1.0: Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. Amendment 5: Enhancements for Very High Throughput for Operation in Bands below 6 GHz /980r6, Qualcomm, Simulation Scenarios /132r2, Intel, Specification Framework

Submission doc.: IEEE /0333r0 Backup Slides March 2015 Oghenekome Oteri (InterDigital)Slide 15

Submission doc.: IEEE /0333r0 Comparison Methodology Link level PER simulation results DL-MU-MIMO: ZF transmit beamforming per subcarrier DL-OFDMA/SU: Single user transmit beamforming per subcarrier UL-MU-MIMO: MMSE receiver per subcarrier UL-OFDMA/SU: MRC per subcarrier Comparison methodology For each SNR point, consider the maximum MCS which satisfies the PER constraint: PER<=1% Determine the TXOP duration by taking into account the maximum MCS, as well as signaling overhead: BA, BAR, SIFS, DIFS, ACK, backoff, etc. Throughput= Data Packet Size/(TXOP duration+DIFS+BO) * (1-PER) Slide 16Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 Comparison Methodologies Cont’d We assume Single stream transmission per user Fixed number of transmit antennas (eight). Fixed/variable number of users supported DL/UL OFDMA : Fixed at 4 users DL/UL MU-MIMO : Varied (up to 4) based on the maximum number of users/streams supported by the channel SNR Average random backoff of 3 slots CSI feedback overhead not included Slide 17Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 Multi-user Transmission Multi-User MIMO Spatial domain multiple user separation (ZF, MMSE, non-linear etc.) DL MU-MIMO first introduced in IEEE ac. UL-MU-MIMO discussed but not adopted. Requires multiple transmit antennas DL MU-MIMO requires high precision Channel State Information at the Transmitter (CSIT) OFDMA Frequency domain multiple user separation DL/UL have been discussed as a possible technology in several contributions Relaxed requirements for multiple transmit antennas CSIT requirements are reduced (may be used for scheduling gain) Slide 18Oghenekome Oteri (InterDigital) March 2015

Submission doc.: IEEE /0333r0 UL OFDMA Schemes, Taken from [3] Multiple RTS/CTS exchange AP initiates RTS/CTS procedure for each STA sequentially. Simultaneous CTS transmission with identical waveform. September 2014 Oghenekome Oteri (InterDigital)Slide 19 AP1 STA1 STA2 RTS CTS RTS CTS Trigger UL DATA ACK*ACK TXOP duration AP1 STA1 STA2 RTS CTS Trigger UL DATA ACK TXOP duration CTS

Submission doc.: IEEE /0333r0 UL OFDMA Schemes, Taken from [4] Assume two approaches Slide 20Oghenekome Oteri (InterDigital) January 2015 AP STA 1 STA 2 STA N_m … Poll N_m: number of STAs multiplexed (4) Inquiry Resp. Poll … ≒ RTS ≒ CTS Note: above conventional frames were used as substitutes for throughput calculation (may be too convenient) ref. doc.11-14/0598 Inquiry Resp. Inquiry Resp. ≒ QoS CF-Poll AP asks STAs one by one if they have Tx demands method 1method 2 TxReq to N_m STAs … ≒ RTS ≒ CTS Both exchanges in legacy rate (24 Mbps)