Rational Bezier Curves

Slides:



Advertisements
Similar presentations
Lecture 14 Curves and Surfaces II
Advertisements

Splines IV – B-spline Curves
Lecture Notes #11 Curves and Surfaces II
2002 by Jim X. Chen: Bezier Curve Bezier Curve.
Lecture 10 Curves and Surfaces I
Advanced Computer Graphics (Spring 2005) COMS 4162, Lecture 13: NURBs, Spline Surfaces Ravi Ramamoorthi Some material.
09/25/02 Dinesh Manocha, COMP258 Triangular Bezier Patches Natural generalization to Bezier curves Triangles are a simplex: Any polygon can be decomposed.
CS 445/645 Fall 2001 Hermite and Bézier Splines. Specifying Curves Control Points –A set of points that influence the curve’s shape Knots –Control points.
© University of Wisconsin, CS559 Spring 2004
Jehee Lee Seoul National University
B-Spline Blending Functions
1 Introduction Curve Modelling Jack van Wijk TU Eindhoven.
08/30/00 Dinesh Manocha, COMP258 Hermite Curves A mathematical representation as a link between the algebraic & geometric form Defined by specifying the.
1 Curves and Surfaces. 2 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized.
CS CS 175 – Week 9 B-Splines Definition, Algorithms.
Offset of curves. Alina Shaikhet (CS, Technion)
09/04/02 Dinesh Manocha, COMP258 Bezier Curves Interpolating curve Polynomial or rational parametrization using Bernstein basis functions Use of control.
Modeling of curves Needs a ways of representing curves: Reproducible - the representation should give the same curve every time; Computationally Quick;
1 Lecture 13 Modeling Curved Lines and Surfaces. 2 Types of Surfaces Ruled Surfaces B-Splines and Bezier Curves Surfaces of Revolution.
09/09/02 Dinesh Manocha, COMP258 Properties of Bezier Curves Invariance under affine parameter transformation P i B i,n (u) = P i B i,n ((u –a)/(b-a))
Curves Locus of a point moving with one degree of freedom
Geometric Modeling Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Cubic Bezier and B-Spline Curves
Curves Mortenson Chapter 2-5 and Angel Chapter 9
Bezier and Spline Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
ENDS 375 Foundations of Visualization Geometric Representation 9/30/04.
Bspline Notes Jordan Smith UC Berkeley CS184. Outline Bézier Basis Polynomials –Linear –Quadratic –Cubic Uniform Bspline Basis Polynomials –Linear –Quadratic.
RASTER CONVERSION ALGORITHMS FOR CURVES: 2D SPLINES 2D Splines - Bézier curves - Spline curves.
Bezier and Spline Curves and Surfaces CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
09/16/02 Dinesh Manocha, COMP258 Surfaces Locally a 2D manifold: i.e. approximating a plane in the ngbd. of each point. A 2-parameter family of points.
Parts of Mortenson Chapter 6-9,
Curve Surfaces June 4, Examples of Curve Surfaces Spheres The body of a car Almost everything in nature.
Curve Modeling Bézier Curves
Curve Modeling B-Spline Curves
(Spline, Bezier, B-Spline)
V. Space Curves Types of curves Explicit Implicit Parametric.
Introduction to Computer Graphics with WebGL
1 Dr. Scott Schaefer Smooth Curves. 2/109 Smooth Curves Interpolation  Interpolation through Linear Algebra  Lagrange interpolation Bezier curves B-spline.
Vector Computer Graphic. Vector entities Line Circle, Ellipse, arc,… Curves: Spline, Bezier’s curve, … … Areas Solids Models.
Splines Vida Movahedi January 2007.
Cornell CS465 Fall 2004 Lecture 15© 2004 Steve Marschner 1 2D Spline Curves CS 465 Lecture 15.
CS 445/645 Fall 2001 Splines/Film/Animation. Final Exam Thursday, December 13 th from 7 – 10 p.m. –Room Olsson 011 You may use one sheet of notes (8.5.
Splines IV – B-spline Curves based on: Michael Gleicher: Curves, chapter 15 in Fundamentals of Computer Graphics, 3 rd ed. (Shirley & Marschner) Slides.
Computer Graphics Representing Curves and Surfaces.
Geometric Modelling 2 INFO410 & INFO350 S Jack Pinches
Keyframing and Splines Jehee Lee Seoul National University.
CS 376 Introduction to Computer Graphics 04 / 25 / 2007 Instructor: Michael Eckmann.
Representation of Curves & Surfaces Prof. Lizhuang Ma Shanghai Jiao Tong University.
Curves: ch 4 of McConnell General problem with constructing curves: how to create curves that are “smooth” CAD problem Curves could be composed of segments.
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Parametric Curves & Surfaces Greg Humphreys University of Virginia CS 445, Spring.
Rational Curve. Rational curve Parametric representations using polynomials are simply not powerful enough, because many curves (e.g., circles, ellipses.
11/26/02(C) University of Wisconsin Last Time BSplines.
Parametric Curves CS 318 Interactive Computer Graphics John C. Hart.
(c) 2002 University of Wisconsin
Slide 129 October 1999CS Computer Graphics (Top Changwatchai) Bézier Curves - Results of Derivation Tangents at endpoints are equal to endpoint slopes.
1 CS 430/536 Computer Graphics I B-Splines and NURBS Week 5, Lecture 9 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing.
Splines Sang Il Park Sejong University. Particle Motion A curve in 3-dimensional space World coordinates.
CS 325 Computer Graphics 04 / 30 / 2010 Instructor: Michael Eckmann.
Rendering Bezier Curves (1) Evaluate the curve at a fixed set of parameter values and join the points with straight lines Advantage: Very simple Disadvantages:
CS552: Computer Graphics Lecture 19: Bezier Curves.
Object Modeling: Curves and Surfaces CEng 477 Introduction to Computer Graphics.
Introduction to Parametric Curve and Surface Modeling.
© University of Wisconsin, CS559 Spring 2004
Representation of Curves & Surfaces
(Spline, Bezier, B-Spline)
Chapter 10-2: Curves.
© University of Wisconsin, CS559 Fall 2004
CURVES CAD/CAM/CAE.
© University of Wisconsin, CS559 Spring 2004
Introduction to Parametric Curve and Surface Modeling
Presentation transcript:

Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: P(u) = (X(u) Y(u) W(u)) = (Pi, wi) Bi,n (u) u [0,1] p(u) = (x(u) y(u)) = (X(u)/W(u) Y(u)/W(u)) = 09/11/02 Dinesh Manocha, COMP258

Rational Bezier Curves: Properties Wi are the weights and they affect the shape of the curve All the Wi cannot be simultaneously zero If all the Wi are non-negative, the curve is still contained in the convex hull of the control polygon It interpolates the end points The tangents at P0 is given by P1 - P0 and at Pn is given by Pn - Pn-1 The weights affect the shape in the interior. What happens when Wi A rational curve has perspective invariance 09/11/02 Dinesh Manocha, COMP258

Rational Bezier Curves and Conics A rational Bezier curve can exactly represent a conic The conics are second degree algebraic curve and their segments can be represented exactly using rational quadratic curves (i.e. 3 control points and 3 weights) A parabola can be represented using a polynomial curve, but a circle, ellipse and hyperbola can only be represented using a rational curve 09/11/02 Dinesh Manocha, COMP258

B-Spline Curves Consists of more than one curve segment Each segment is influenced by a few control points (e.g. local control) Degree of a curve is indpt. of total number of control points Use of basis function that have a local influence Convex hull property: contained in the convex hull of control points In general, it does not interpolate any control point(s) 09/11/02 Dinesh Manocha, COMP258

Non-Uniform B-Spline Curves A B-spline curve is defined as: Each segment is influenced by a few control points (e.g. local control) where Pi are the control points, k controls the degree of the basis polynomials 09/11/02 Dinesh Manocha, COMP258

Non-Uniform Basis Function The basis function is defined as: where k controls the degree (k-1) of the resulting polynomial in u and also the continuity of the curve. ti are the knot values, and a set knot values define a knot vector 09/11/02 Dinesh Manocha, COMP258

Non-Uniform Basis Function The parameters determining the number of control points, knots and the degree of the polynomial are related by where T is the number of knots. For a B-spline curve that interpolates P0 and Pn, the knot T is given as where the end knots  and  repeat with multiplicity k. If the entire curve is parametrized over the unit interval, then, for most cases  =0 and  = 1. If we assign non-decreasing values to the knots, then  =0 and  = n –k + 2. where k controls the degree (k-1) of the resulting polynomial in u and also the continuity of the curve. ti are the knot values, and a set knot values define a knot vector 09/11/02 Dinesh Manocha, COMP258

Non-Uniform Basis Function Multiple or repeated knot-vector values, or multiply coincident control point, induce discontinuities. For a cubic curve, a double knot defines a join point with curvature discontinuity. A triple knot produces a corner point in a curve. If the knots are placed at equal intervals of the parameter, it describes a UNIFORM non-rational B-spline; otherwise it is non-uniform. Usually the knots are integer values. In such cases, the range of the parameter variable is: 09/11/02 Dinesh Manocha, COMP258

Locality Each segment of a B-spline curve is influenced by k control points Each control point only influences only k curve segments The interior basis functions (not the ones influenced by endpoints) are independent of n (the number of control points) All the basis functions add upto 1: convex hull property 09/11/02 Dinesh Manocha, COMP258

Uniform B-Spline Basis Functions The knot vector is uniformly spaced The B-spline curve is an approximating curve and not interpolating curve The B-spline curve is a uniform or periodic curve, as the basis function repeats itself over successive intervals of the parametric variable Use of Non-uniformity: insert knots at selected locations, to reduce the continuity at a segment joint 09/11/02 Dinesh Manocha, COMP258