V.N. Shastin 1, R.Kh. Zhukavin 1, K.A. Kovalevsky 1, V.V. Tsyplenkov 1, S.G. Pavlov 2, H.-W. Hübers 2. N.V. Abrosimov 3, H. Riemann 3 1 Institute for Physics.

Slides:



Advertisements
Similar presentations
Cphys351 c4:1 Chapter 4: Atomic Structure The Nuclear Atom The Atom as the smallest division of an element quantization of electric charge oil drop experiments.
Advertisements

SFB C4 06/06 1/15 Anja Zimmer Friedrich-Schiller-University Jena, Germany 3 rd ILIAS-GW Meeting, London October 27 th 2006 Relaxation mechanisms in solids.
EE 230: Optical Fiber Communication Lecture 9 From the movie Warriors of the Net Light Sources.
Light Amplification by Stimulated
Quantum Well Lasers Christopher P. Heagney Jason Yoo.
Ruby Laser Crystal structure of sapphire: -Al2O3 (aluminum oxide). The shaded atoms make up a unit cell of the structure. The aluminum atom inside the.
PHYSICS DEPARTMENT. RUBY LASER TOPICS TO BE DISCUSSED HISTORY CHARACTERSTICS CONSTRUCTION PRINCIPLE AND WORKING SPIKING THRESHOLD POWER APPLICATIONS.
1.2 Population inversion Absorption and Emission of radiation
Absorption and emission processes
Ultrafast Spectroscopy
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
TYPES OF LASER Solid State lasers:Ruby laser, Nd:YAG laser, Nd:Glass laser Gas lasers:He-Ne laser, CO 2 laser, Argon laser Liquid/Dye lasers:Polymethene.
Growth and Characterization of IV-VI Semiconductor Multiple Quantum Well Structures Patrick J. McCann, Huizhen Wu, and Ning Dai* School of Electrical and.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
ITOH Lab. Hiroaki SAWADA
Picosecond fiber laser for thin film micro-processing
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
Nanoclusters in model ferroelastics Hg 2 Hal 2 E.M.Roginskii A.F.Ioffe Physical-Technical Institute, Russia.
Alexandr A. Ezhevskii *, Andrey V. Soukhorukov *, Davud V. Guseinov *, Sergey A. Popkov *, Anatoliy V. Gusev †, Vladimir A. Gavva † 1 Department of Physics,
1 L8 Lasers UConn ECE /10/2015 F. Jain Operating parameters: Operating wavelength: green, red, blue, fiber optic wavelength 1.55 microns Optical.
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
Recent advances in intercalation compounds physics.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Size dependence of confined acoustic phonons in CuCl nanocrystals Itoh lab Takanobu Yamazaki Itoh lab Takanobu Yamazaki J. Zhao and Y. Masumoto, Phys.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
APPLICATIONS OF THERMOACOUSTIC TECHNIQUES FOR THERMAL, OPTICAL AND MECHANICAL CHARACTERIZATION OF MATERIALS, STRUCTURES AND DEVICES Mirosław Maliński.
Silicon 2010, N. Novgorod > Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland.
Itoh Lab. M1 Masataka YASUDA
Terahertz waves base on SiGe Alloy NTU 林楚軒. Introduction Structure a.SiGe QW intersubband transition b.SiGe QW with dopant helping c.Si with dopant Summary.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Development of High-efficiency Yb:YAG Regenerative Amplifier for Industry Isao Matsushima 1, Kazuyuki Akagawa² 1. National Institute of Advanced Industrial.
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Luminescence basics Types of luminescence
SALIENT FEATURES OF SHALLOW DONOR INTERACTIONS IN PROTON-IRRADIATED SILICON V.V. Emtsev and G.A. Oganesyan Ioffe Physicotechnical Institute Russian Academy.
 HISTORY  CHARACTERSTICS  CONSTRUCTION  PRINCIPLE AND WORKING  SPIKING  THRESHOLD POWER  APPLICATIONS.
Region of possible oscillations
Chapter 3 Lattice vibration and crystal thermal properties Shuxi Dai Department of Physics Unit 4 : Experimental measurements of Phonons.
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
Inelastic Scattering: Neutrons vs X-rays Stephen Shapiro Condensed Matter Physics/Materials Science February 7,2008.
A. F. Ioffe Physicotechnical Institute, St. Peterburg, Russia
Isotopic fingerprints of gold-containing luminescence centers in 28 Si Karl Johnston 1, Mike Thewalt 2, Martin Henry 3 1 ISOLDE/CERN 2 Dept of Physics,
J.Vaitkus, L.Makarenko et all. RD50, CERN, 2012 The free carrier transport properties in proton and neutron irradiated Si(Ge) (and comparison with Si)
C ontrolling Coherent Nonlinear Optical Signals of Helical Structures by Adaptive Pulse Polarizations Dmitri V. Voronine Department of Chemistry, University.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. The Raman spectra of Er,Yb:KLaP glass samples. The Raman frequency shift of the.
Date of download: 6/30/2016 Copyright © 2016 SPIE. All rights reserved. Trans-cis conformational change of the azo-dyes under light irradiation. (a) Equivalent.
Light Scattering Spectroscopy
L ECE 5212 Fall 2014 UConn F. Jain Lasers
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Light Amplification by Stimulated
Really Basic Optics Instrument Sample Sample Prep Instrument Out put
Enrica Chiadroni LNF-INFN 20 aprile 2010
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Period Dependence of Time Response of Strained Semiconductor Superlattices XIVth International Workshop on Polarized Sources, Targets & Polarimetry Leonid.
Dye Lasers Rob van Rooij Images from:
Titanium Sapphire Laser
“Phonon” Dispersion Relations in Crystalline Materials
Quantum Mechanical Treatment of The Optical Properties
RUBY LASER.
TIME RESOLVED SPECTROSCOPY [T.R.S.]:
Presentation transcript:

V.N. Shastin 1, R.Kh. Zhukavin 1, K.A. Kovalevsky 1, V.V. Tsyplenkov 1, S.G. Pavlov 2, H.-W. Hübers 2. N.V. Abrosimov 3, H. Riemann 3 1 Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation 2 Institute of Planetary Research, Germany Aerospace Center, Berlin, Germany 3 Institute of Crystal Growth, Berlin, Germany Supported by RAS, RFBR (Russia), DFG (Germany) IPM RAS IKZ Кремниевые лазеры для терагерцового диапазона (Silicon lasers for terahertz domain)

Contents: Unstressed silicon Experimental results Donor state relaxation rates Stressed silicon Experimental results Donor state relaxation rates

1s(A 1 ) 1s(T 2 ) 1s(E ) - P AsSbBi 2p 0 2s 2p ± 10 meV 1s(T 2 :  8) 1s(T 2 :  7 ) Conduction Band Group V Donors in Silicon

+ ~1/r ~  (r) Состояния мелких доноров в кремнии {0, 0, 0, 0, 1,-1} = {0, 0, 1,-1, 0, 0} = {1,-1, 0, 0, 0, 0} = T2 T2 {1, 1,-1,-1, 0, 0} = {1, 1, 1, 1,-2,-2} = E {1, 1, 1, 1, 1, 1} = A1A1

Principle state lifetimes PAs Pump-probe~30 ps~20 ps FWHM Si N ~26 ps NTD, 1,2х10 14 cm -3 FWHM Si 28 ~80 ps 2p ± state (A 1, E) Exp. PAs Pump-probe~30 ps~50 ps FWHM Si N ~32 ps NTD, 1,2х10 14 cm -3 ~30 ps 7х10 14 cm -3 FWHM Si 28 ~160 ps 2p 0 state (A 1, E) Theory PAsSb 2р 0 (ps) А1А Е T2T р ± (ps)

Layout of the experiment

TEA CO 2 laser excitation, unstressed silicon (Family of experimental data) Operating temperature Donors concentration: 1· · cm -3 Threshold intensity: kW/cm 2 Small signal gain:  cm -1 Emission spectra:  2×3×7 mm 3 THz Quantum efficiency: Exp.? Theory: up to 10%

Si:P experiment (10,6 µm TEA CO 2 laser excitation) P donor THz output vs. pump intensity under different stress.

Sb donor THz output vs. pump intensity and compressive stress. Si:Sb experiment (10,6 µm TEA CO2 laser excitation) 200kW/cm 2 correspond quant/cm 2 s.

Si:Sb Under Q-switch CO 2 laser pump Least value of threshold intensity ~150W/cm 2

Si:As experiment (10,6 µm TEA CO 2 laser excitation) As donor THz output vs. stress under several pump intensity. 200kW/cm 2 correspond quant/cm 2 s. As donor THz output vs. pump intensity under different stress

Least value of threshold intensity ~300W/cm 2 Si:As Under Q-switch CO 2 laser pump

Si:Bi experiment (10,6 µm TEA CO 2 laser excitation) Bi donor THz output vs. stress under several pump intensity. 200kW/cm 2 correspond quant/cm 2 s. Sb donor THz output vs. pump intensity under different stress. Intensity, a.u.

Energy levels of donors in stressed Si As Sb X-valley splitting under uniaxial stress X. The stress removes sixfold degeneracy and, as a result, the energy difference ΔE appears between different groups of valleys. Intervalley phonon scattering of electrons in Si K 111 K 010 qNqN qfqf qgqg e e [100] [010] [001] e Brillouin zone vector of reciprocal lattice; normal process; umklapp-process f -type; umklapp-process g -type;

0 2p 0 1s(E) 1s(T 2 ) 1s(A 1 ) 1s(B 2 ) 1s(B 1 ) 1s(E) 1s(A 1 ) 21∙10 9 c ∙10 10 c ∙10 10 c ∙10 9 c -1 2p 0 (А 1 +В 2 ) Si:Sb Stress (0.6 kbar) Laser state relaxation rates 0 2p 0 1s(E) 1s(T 2 ) 1s(A 1 ) 1s(B 2 ) 1s(B 1 ) 1s(E) 1s(A 1 ) 29∙10 9 c -1 7∙10 10 c ∙10 10 c ∙10 9 c -1 2p 0 (А 1 +В 2 ) Si:P Stress (0.6 kbar) intra 2p± = 2.15 ∙10 10 c -1 intra 2p0 = 2 ∙10 9 c -1

0 2p 0 1s(E) 1s(T 2 ) 1s(A 1 ) 1s(B 2 ) 1s(B 1 ) 1s(E) 1s(A 1 ) 2.6∙ ∙ ∙10 9 2p 0 (А 1 +В 2 ) Stress (2.5 kbar) 2p± 2s 15∙ ∙10 9 intra 2p± = 2.15 ∙10 10 c -1 intra 2p0 = 2 ∙10 9 c p 0 1s(E) 1s(T 2 ) 1s(A 1 ) 1s(B 2 ) 1s(B 1 ) 1s(E) 1s(A 1 ) 5.5∙10 9 2∙ ∙10 9 2p 0 (А 1 +В 2 ) Stress (1.8 kbar) 2p± 2s 3∙10 11 E E Si:As Si:Bi Laser state relaxation rates, s -1 intra 2p± = 2.15 ∙10 10 c -1 intra 2p0 = 2 ∙10 9 c -1

Влияние деформации на эффективность накачки рабочих состояний (Pump efficiency of the laser states depending on stress) СО 2 Релаксация на фононах THg СО 2 Релаксация на фононах THg emission

Population, gain, absorption Si:Sb Donor gain & D- - center absorption Population of 2p 0 states and D- center concentration in unstressed (red lines) & stressed silicon (blue lines) Blue lines correspond to valley shift 5 meV (0.6 kbar)

Summary The axial compressive stress of silicon crystal applied along [100] crystallographic orientation: From the experiment - increases the gain and decreases the threshold intensity for THz lasing of optically excited group-V donors; - changes the 2p ± - upper laser state for the 2p 0 one as well as emission frequency for As and Bi donors; - lasing of P and Sb donors is based on the 2p 0 – 1s(T2) transitions & laser line does not depend on stress. From the theoretical treatment - f-phonons give noticeable contribution in relaxation of donor laser states in unstressed silicon and lose meaning even under small splitting of conduction band valleys; - valley shift of the conduction band increases both pump efficiency and the lifetime of the upper laser states ; - D - center THz absorption block lasing of donors in silicon under photo-ionizing excitation & can be eliminated by axial deformation of the host crystal.

Current study & Further development 1) Spin-orbit interaction & laser frequencies Si:Sb, Si:Bi 2) Group-V donor lasing from isotope enriched silicon 28 Si 3) Low T donor relaxation in stressed silicon (exp. study) 4) Donor/acceptor lasing from low dimensional Si/SiGe structures 5) CW operation

D - binding energy vs. compression L.E.Oliveira, L.M.Falicov, Phys.Rev.B 33,6990,(1986)-solid curve; D.M. Larsen, Phys.Rev. B 23,5521 (1981) –dashed curve.

1кбар соответствует 8.5 мэВ Si:P 1s(E) 1s(T 2 ) 1s(A 1 ) TA-f 8.4∙10 9 c -1 TA-f 12.4∙10 9 c -1 LA-g 0.3∙10 9 c -1 LA-g c -1 TA-g 7∙10 10 c -1 TA-g 3.6∙10 10 c -1 2p02p0 Si:P Темп внутридолинных переходов: 2р 0 - 1s 2.1∙10 9 с ∙10 10 c -1 7∙10 10 c ∙10 10 c -1

1 kbar yields 8.5 meV valley shift for [100] stress Si:Sb 1s(E) 1s(T 2 ) 1s(A 1 ) TA-f ~10 8 c -1 TA-f 14.2∙10 9 c -1 LA-g 2.6∙10 9 c -1 LA-g 1.75∙10 9 c -1 TA-g 4.6∙10 10 c -1 TA-g 3.8∙10 10 c -1 2p 0 Si:Sb Intra valley scattering rate : 2р 0 - 1s 2.1∙10 9 с ∙10 10 c ∙10 10 c ∙10 10 c -1

Si:As LA-f 0.79∙10 10 c -1 1s(E) 1s(T 2 ) 1s(A 1 ) TA-f 12.2∙10 9 c -1 LA-g 0.63∙10 9 c -1 LA-g 0.7∙10 9 c -1 TA-f 2.7∙10 10 c -1 TA-f 1.6∙10 10 c -1 2p 0 2s 2p ± LA-g 5∙10 10 c -1 LA-g 3.3∙10 10 c -1 TA-f 1.46 ∙10 9 c -1 LA-f 0.98∙10 9 c -1 LA-f 2.7∙10 10 c -1 LA-g 6∙10 9 c -1 LA-g 6∙10 9 c -1 Intra valley scattering rates: 2р 0 - 1s 2.1∙10 9 с -1 2s - 1s 5.2∙10 9 c -1 2p± - 1s 0.1 ∙10 9 c -1 2p± - 2p ∙10 9 c -1 2p± - 2s 8.9 ∙10 9 c ∙10 10 c ∙10 10 c ∙10 10 c -1 5∙10 10 c -1

Relaxation of the lower laser level f- and g-phonon scattering rates in As donor under stress Relaxation of 2р(+/-) and 2р 0 states

1s(T 2 :Г 7 ) 1s(T 2 :Г 8 ) 1s(A 1 ) TA-f 5.2∙10 9 c -1 LA-g ~ 10 8 c -1 LA-g 2∙10 9 c -1 LA-f 4.7∙10 9 c -1 TA-f 6∙10 9 c -1 2p 0 2s 2p ± LA-g 0.53∙10 9 c -1 LA-g 0.4∙10 9 c -1 TA-f 1.4∙10 10 c -1 TO-f ~3.2∙10 11 c -1 1s(E) LA-g 3.7∙10 9 c -1 Si:Bi

f- and g-phonon scattering rates in Bi donor under stress

Relaxation 1s(B 2 ) state in Bi donor under stressed silicon