Design of Systems with INTERNAL CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Essential Part of Exchanging.

Slides:



Advertisements
Similar presentations
Chapter 2 Introduction to Heat Transfer
Advertisements

Convection in Flat Plate Turbulent Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Extra Effect For.
Chapter 8 INTERNAL FORCED CONVECTION
Estimation of Convective Heat Transfer Coefficient
CHAPTER 5 Principles of Convection
Me 340 Project Ben Richards, Michael Plooster. -In many applications it is desirable to insulate a pipe in order to protect those working near it. -It.
Chapter 2: Overall Heat Transfer Coefficient
Internal Convection: Fully Developed Flow
Analysis of Simple Cases in Heat Transfer P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Gaining Experience !!!
Heat transfer to fluids without phase change
Internal Flow: Heat Transfer Correlations
Chapter 8 INTERNAL FORCED CONVECTION
CHE/ME 109 Heat Transfer in Electronics LECTURE 17 – INTERNAL FORCED CONVECTION FUNDAMENTALS.
CHE/ME 109 Heat Transfer in Electronics LECTURE 18 – FLOW IN TUBES.
CHE/ME 109 Heat Transfer in Electronics
Introduction to Convection: Flow and Thermal Considerations
Thermal Development of Internal Flows P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Concept for Precise Design ……
Correlations for INTERNAL CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Essential Part of Exchanging Heat……..
Computation of FREE CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Quantification of Free …….
Heat Convection : Cylinder in Cross Flow P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Common Industrial Application.
Kern Method of SHELL-AND-TUBE HEAT EXCHANGER Analysis
Recent Advances in Condensation on Tube Banks P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Reduce the Degree of Over Design!!!
Fluid Dynamics: Boundary Layers
Momentum Heat Mass Transfer
Chilton and Colburn J-factor analogy
Internal Flow Convection -constant surface temperature case Another commonly encountered internal convection condition is when the surface temperature.
FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Empirical and Practical Relations for Forced-Convection Heat Transfer
Fouling Factor: After a period of operation the heat transfer surfaces for a heat exchanger become coated with various deposits present in flow systems,
Enhancement of Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Invention of Compact Heat Transfer Devices……
1 CHAPTER 6 HEAT TRANSFER IN CHANNEL FLOW 6.1 Introduction (1) Laminar vs. turbulent flow transition Reynolds number is where  D tube diameter  u mean.
Chapter 6 Introduction to Forced Convection:
Chapter 19 FORCED CONVECTION
HEAT TRANSFER FINITE ELEMENT FORMULATION
Convection: Internal Flow ( )
Heat Transfer/Heat Exchanger How is the heat transfer? Mechanism of Convection Applications. Mean fluid Velocity and Boundary and their effect on the rate.
FREE CONVECTION 7.1 Introduction Solar collectors Pipes Ducts Electronic packages Walls and windows 7.2 Features and Parameters of Free Convection (1)
Convection in Flat Plate Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Universal Similarity Law ……
Chapter 19 FORCED CONVECTION
Chapter 9: Natural Convection
HW #4 /Tutorial # 4 WRF Chapter 18; WWWR Chapter 19 ID Chapter 6 Tutorial # 4 WWWR #19.1,19.4, WRF# ID # To be discussed during the week.
Internal Flow: Heat Transfer Correlations. Fully Developed Flow Laminar Flow in a Circular Tube: The local Nusselt number is a constant throughout the.

External Flow: The Flat Plate in Parallel Flow
External Flow: The Flat Plate in Parallel Flow Chapter 7 Section 7.1 through 7.3.
Convection Heat Transfer in Manufacturing Processes P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Mode of Heat Transfer due to.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
CONVECTION : An Activity at Solid Boundary P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Identify and Compute Gradients.
Mechanical Engineering Department GOVERNMENT ENGINEERING COLLEGE, DAHOD. A PPT On Derivation of LMTD for Parallel flow Heat Exchanger Prepared By:
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 11 Heat Exchangers.
Chapter 8: Internal Forced Convection
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 9 Free Convection.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
CHAPTER 6 Introduction to convection
Thermal Considerations in a Pipe Flow (YAC: 10-1– 10-3; 10-6) Thermal conditions  Laminar or turbulent  Entrance flow and fully developed thermal condition.
Internal Flow: General Considerations. Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume.
Internal Flow: Heat Transfer Correlations Chapter 8 Sections 8.4 through 8.8.
Internal Flow: Heat Transfer Correlations
Chapter 8: Internal Flow
INTERNAL FORCED CONVECTION
Fundamentals of Convection
Natural Convection New terms Volumetric thermal expansion coefficient
Heat Transfer Coefficient
Heat Transfer In Channels Flow
Internal Flow: General Considerations
HW ) a), b) F1-2 = 0.07 c) F1-2 = ) Q3 = 781 W.
Chapter 19 FORCED CONVECTION
Chapter 19 FORCED CONVECTION
Heat Transfer Correlations for Internal Flow
Internal Flow: Heat Transfer Correlations Chapter 8 Sections 8.4 through 8.8.
Presentation transcript:

Design of Systems with INTERNAL CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Essential Part of Exchanging Heat……..

Evolution of Macro Flow Parameters

Energy Balance : Heating or Cooling of fluid Rate of energy inflow TmTm T m + dT m dx qq Rate of energy outflow Rate of heatflow through wall: Conservation of energy:

This expression is an extremely useful result, from which axial Variation of T m may be determined. The solution to above equation depends on the surface thermal condition. Two special cases of interest are: 1.Constant surface heat flux. 2.Constant surface temperature

Constant Surface Heat flux heating or cooling For constant surface heat flux: For entire pipe: For small control volume:

Integrating form x = 0 The mean temperature varies linearly with x along the tube. For a small control volume: The surface temperature variation depends on variation of h. For a thermally developed flow with constant wall flux:

Integrating from x=0 (T m = T m,i ) to x = L (T m = T m,o ): Constant Surface Heat Flux : Heating of Fluid

Determination of Heat Transfer Coefficient TiTi T s (x) q’’ Cold Wall & Hot Fluid T(r,x)

Computation of Temperature Distribution For axi-symmetric flow & Heat Transfer : For high Prandtl number fluids, the flow can be approximated as hydrodynamically developed and thermally developing flow.

Thermally Developed Flow: Constant Heat Flux

Similarly for constant wall temperature:

Solution : Constant Heat Flux : Fully Developed Boundary conditions: For hydrodynamically developed flow:

Integration of above equation with substitution of boundary conditions: Substitute T &u and integrate

TmTm T m + dT m dx qq

Integrating from x=0 (T m = T m,i ) to x = L (T m = T m,o ): For a small control volume: Constant Surface Temperature heating or cooling

h : Average Convective heat transfer coefficient.

The above result illustrates the exponential behavior of the bulk fluid for constant wall temperature. It may also be written as:

Constant Surface Temperature heating or cooling T x T x

To get this we write: to get the local variation in bulk temperature. For practical use, it important to relate the wall temperature, the inlet and exit temperatures, and the rate of heat transfer one single expression.

Constant Surface Temperature heating or cooling T x T x

Define Log Mean Temperature Difference :

The above expression requires knowledge of the exit temperature, which is only known if the heat transfer rate is known and vice versa. An alternate equation can be derived which eliminates the outlet temperature. We Know

Convection correlations: laminar flow in circular tubes 1. The fully developed region for constant surface heat flux for constant surface temperature Note: the thermal conductivity k should be evaluated at average T m

Convection correlations: laminar flow in circular tubes The entry region : for the constant surface temperature condition thermal entry length

Convection correlations: laminar flow in circular tubes for the combined entry length All fluid properties evaluated at the mean T Valid for

Thermally developing, hydrodynamically developed laminar flow (Re < 2300) Constant wall temperature: Constant wall heat flux:

Simultaneously developing laminar flow (Re < 2300) Constant wall temperature: Constant wall heat flux: which is valid over the range 0.7 < Pr < 7 or if Re Pr D/L 7.

Convection correlations: turbulent flow in circular tubes A lot of empirical correlations are available. For smooth tubes and fully developed flow. For rough tubes, coefficient increases with wall roughness. For fully developed flows

Fully developed turbulent and transition flow (Re > 2300) Constant wall Temperature: Where Constant wall temperature: For fluids with Pr > 0.7 correlation for constant wall heat flux can be used with negligible error.

Effects of property variation with temperature Liquids, laminar and turbulent flow: Subscript w: at wall temperature, without subscript: at mean fluid temperature Gases, laminar flow Nu = Nu 0 Gases, turbulent flow

Noncircular Tubes: Correlations For noncircular cross-sections, define an effective diameter, known as the hydraulic diameter: Use the correlations for circular cross-sections.

Selecting the right correlation Calculate Re and check the flow regime (laminar or turbulent) Calculate hydrodynamic entrance length (x fd,h or L he ) to see whether the flow is hydrodynamically fully developed. (fully developed flow vs. developing) Calculate thermal entrance length (x fd,t or L te ) to determine whether the flow is thermally fully developed. We need to find average heat transfer coefficient to use in U calculation in place of h i or h o. Average Nusselt number can be obtained from an appropriate correlation. Nu = f(Re, Pr) We need to determine some properties and plug them into the correlation. These properties are generally either evaluated at mean (bulk) fluid temperature or at wall temperature. Each correlation should also specify this.

Heat transfer enhancement Enhancement Increase the convection coefficient Introduce surface roughness to enhance turbulence. Induce swirl. Increase the convection surface area Longitudinal fins, spiral fins or ribs.

Heat transfer enhancement Helically coiled tube Without inducing turbulence or additional heat transfer surface area. Secondary flow