EE-2027 SaS 06-07, L11 1/12 Lecture 11: Fourier Transform Properties and Examples 3. Basis functions (3 lectures): Concept of basis function. Fourier series.

Slides:



Advertisements
Similar presentations
Signal Processing in the Discrete Time Domain Microprocessor Applications (MEE4033) Sogang University Department of Mechanical Engineering.
Advertisements

ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Lecture 3: Signals & Systems Concepts
Lecture 7: Basis Functions & Fourier Series
Leo Lam © Signals and Systems EE235. Transformers Leo Lam ©
EE-2027 SaS, L13 1/13 Lecture 13: Inverse Laplace Transform 5 Laplace transform (3 lectures): Laplace transform as Fourier transform with convergence factor.
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
Lecture 19: Discrete-Time Transfer Functions
Lecture 16: Continuous-Time Transfer Functions
Lecture 17: Continuous-Time Transfer Functions
Lecture 5: Linear Systems and Convolution
EE-2027 SaS, L15 1/15 Lecture 15: Continuous-Time Transfer Functions 6 Transfer Function of Continuous-Time Systems (3 lectures): Transfer function, frequency.
PROPERTIES OF FOURIER REPRESENTATIONS
Lecture 8: Fourier Series and Fourier Transform
Lecture 14: Laplace Transform Properties
APPLICATIONS OF FOURIER REPRESENTATIONS TO
EE-2027 SaS, L10: 1/13 Lecture 10: Sampling Discrete-Time Systems 4 Sampling & Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
^ y(t) Model u(t) u(t) y(t) Controller Plant h(t), H(jw)
EE-2027 SaS, L11 1/13 Lecture 11: Discrete Fourier Transform 4 Sampling Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
Lecture 9: Fourier Transform Properties and Examples
EE-2027 SaS, L18 1/12 Lecture 18: Discrete-Time Transfer Functions 7 Transfer Function of a Discrete-Time Systems (2 lectures): Impulse sampler, Laplace.
Lecture 6: Linear Systems and Convolution
Lecture 12: Laplace Transform
Chapter 3 1 Laplace Transforms 1. Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous.
Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim.
Types of systems in the Laplace domain. System order Most systems that we will be dealing with can be characterised as first or second order systems.
Leo Lam © Signals and Systems EE235. Leo Lam © Fourier Transform Q: What did the Fourier transform of the arbitrary signal say to.
Properties of the z-Transform
EE3010 SaS, L7 1/19 Lecture 7: Linear Systems and Convolution Specific objectives for today: We’re looking at continuous time signals and systems Understand.
Fourier Transforms Section Kamen and Heck.
Digital Signal Processing
SE 207: Modeling and Simulation Introduction to Laplace Transform
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
Lecture 24: CT Fourier Transform
CHAPTER 4 Laplace Transform.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
CHAPTER 4 Laplace Transform.
Chapter 5 Z Transform. 2/45  Z transform –Representation, analysis, and design of discrete signal –Similar to Laplace transform –Conversion of digital.
1 Fourier Representations of Signals & Linear Time-Invariant Systems Chapter 3.
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 School of Computer and Communication Engineering, UniMAP Hasliza A Samsuddin EKT.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Chapter 2. Signals and Linear Systems
Motivation Thus far we have dealt primarily with the input/output characteristics of linear systems. State variable, or state space, representations describe.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Causality Linearity Time Invariance Temporal Models Response to Periodic.
Signals and Systems Prof. H. Sameti Chapter 4: The Continuous Time Fourier Transform Derivation of the CT Fourier Transform pair Examples of Fourier Transforms.
ES97H Biomedical Signal Processing
Chapter 7 The Laplace Transform
4. Introduction to Signal and Systems
EE 207 Dr. Adil Balghonaim Chapter 4 The Fourier Transform.
Linear Constant-Coefficient Difference Equations
Fourier Representation of Signals and LTI Systems.
Signals and Systems Lecture #6 EE3010_Lecture6Al-Dhaifallah_Term3321.
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 UniMAP.
Frequency domain analysis and Fourier Transform
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 School of Computer and Communication Engineering, UniMAP Amir Razif B. Jamil Abdullah EKT.
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
Chapter 2. Signals and Linear Systems
ENEE 322: Continuous-Time Fourier Transform (Chapter 4)
Math for CS Fourier Transforms
DYNAMIC BEHAVIOR OF PROCESSES :
Lecture 7: Basis Functions & Fourier Series
Linear Constant-Coefficient Difference Equations
Chapter 15 Introduction to the Laplace Transform
Description and Analysis of Systems
UNIT II Analysis of Continuous Time signal
Chapter 3 Convolution Representation
Fundamentals of Electric Circuits Chapter 15
LECTURE 18: FOURIER ANALYSIS OF CT SYSTEMS
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
Presentation transcript:

EE-2027 SaS 06-07, L11 1/12 Lecture 11: Fourier Transform Properties and Examples 3. Basis functions (3 lectures): Concept of basis function. Fourier series representation of time functions. Fourier transform and its properties. Examples, transform of simple time functions. Objectives: 1.Properties of a Fourier transform –Linearity & time shifts –Differentiation –Convolution in the frequency domain 2.Understand why an ideal low pass filter cannot be manufactured

EE-2027 SaS 06-07, L11 2/12 Lecture 11: Resources Core material SaS, O&W, Chapter 4.3, C4.4 SaS, HvV, Chapter 3.6 SaLSA, C, Chapter 5.4, 6.1 Background While the Fourier series/transform is very important for representing a signal in the frequency domain, it is also important for calculating a system’s response (convolution). A system’s transfer function is the Fourier transform of its impulse response Fourier transform of a signal’s derivative is multiplication in the frequency domain: j  X(j  ) Convolution in the time domain is given by multiplication in the frequency domain (similar idea to log transformations)

EE-2027 SaS 06-07, L11 3/12 Review: Fourier Transform A CT signal x(t) and its frequency domain, Fourier transform signal, X(j  ), are related by This is denoted by: For example: Often you have tables for common Fourier transforms The Fourier transform, X(j  ), represents the frequency content of x(t). It exists either when x(t)->0 as |t|->∞ or when x(t) is periodic (it generalizes the Fourier series) analysis synthesis

EE-2027 SaS 06-07, L11 4/12 Linearity of the Fourier Transform The Fourier transform is a linear function of x(t) This follows directly from the definition of the Fourier transform (as the integral operator is linear) & it easily extends to an arbitrary number of signals Like impulses/convolution, if we know the Fourier transform of simple signals, we can calculate the Fourier transform of more complex signals which are a linear combination of the simple signals

EE-2027 SaS 06-07, L11 5/12 Fourier Transform of a Time Shifted Signal We’ll show that a Fourier transform of a signal which has a simple time shift is: i.e. the original Fourier transform but shifted in phase by –  t 0 Proof Consider the Fourier transform synthesis equation: but this is the synthesis equation for the Fourier transform e -j  0 t X(j  )

EE-2027 SaS 06-07, L11 6/12 Example: Linearity & Time Shift Consider the signal (linear sum of two time shifted rectangular pulses) where x 1 (t) is of width 1, x 2 (t) is of width 3, centred on zero (see figures) Using the FT of a rectangular pulse L10S7 Then using the linearity and time shift Fourier transform properties t t t x1(t)x1(t) x2(t)x2(t) x (t)x (t)

EE-2027 SaS 06-07, L11 7/12 Fourier Transform of a Derivative By differentiating both sides of the Fourier transform synthesis equation with respect to t: Therefore noting that this is the synthesis equation for the Fourier transform j  X(j  ) This is very important, because it replaces differentiation in the time domain with multiplication (by j  ) in the frequency domain. We can solve ODEs in the frequency domain using algebraic operations (see next slides)

EE-2027 SaS 06-07, L11 8/12 Convolution in the Frequency Domain We can easily solve ODEs in the frequency domain: Therefore, to apply convolution in the frequency domain, we just have to multiply the two Fourier Transforms. To solve for the differential/convolution equation using Fourier transforms: 1.Calculate Fourier transforms of x(t) and h(t): X(j  ) by H(j  ) 2.Multiply H(j  ) by X(j  ) to obtain Y(j  ) 3.Calculate the inverse Fourier transform of Y(j  ) H(j  ) is the LTI system’s transfer function which is the Fourier transform of the impulse response, h(t). Very important in the remainder of the course (using Laplace transforms) This result is proven in the appendix

EE-2027 SaS 06-07, L11 9/12 Example 1: Solving a First Order ODE Calculate the response of a CT LTI system with impulse response: to the input signal: Taking Fourier transforms of both signals: gives the overall frequency response: to convert this to the time domain, express as partial fractions: Therefore, the CT system response is: assume b  a

EE-2027 SaS 06-07, L11 10/12 h(t)h(t) t 0 Consider an ideal low pass filter in frequency domain: The filter’s impulse response is the inverse Fourier transform which is an ideal low pass CT filter. However it is non-causal, so this cannot be manufactured exactly & the time-domain oscillations may be undesirable We need to approximate this filter with a causal system such as 1 st order LTI system impulse response {h(t), H(j  )}: Example 2: Design a Low Pass Filter  H(j)H(j) cc  c

EE-2027 SaS 06-07, L11 11/12 Lecture 11: Summary The Fourier transform is widely used for designing filters. You can design systems with reject high frequency noise and just retain the low frequency components. This is natural to describe in the frequency domain. Important properties of the Fourier transform are: 1. Linearity and time shifts 2. Differentiation 3. Convolution Some operations are simplified in the frequency domain, but there are a number of signals for which the Fourier transform does not exist – this leads naturally onto Laplace transforms. Similar properties hold for Laplace transforms & the Laplace transform is widely used in engineering analysis.

EE-2027 SaS 06-07, L11 12/12 Lecture 11: Exercises Theory 1.Using linearity & time shift calculate the Fourier transform of 2.Use the FT derivative relationship (S7) and the Fourier series/transform expression for sin(  0 t) (L10-S3) to evaluate the FT of cos(  0 t). 3.Calculate the FTs of the systems’ impulse responses a)b) 4.Calculate the system responses in Q3 when the following input signal is applied Matlab/Simulink 5.Verify the answer to Q1 using the Fourier transform toolbox in Matlab 6.Verify Q3 and Q4 in Simulink 7.Simulate a first order system in Simulink and input a series of sinusoidal signals with different frequencies. How does the response depend on the input frequency (S12)?

EE-2027 SaS 06-07, L11 13/12 Lecture 12: Tutorial This will be combined with the Laplace Tutorial L16

EE-2027 SaS 06-07, L11 14/12 Appendix: Proof of Convolution Property Taking Fourier transforms gives: Interchanging the order of integration, we have By the time shift property, the bracketed term is e -j  H(j  ), so