Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.

Slides:



Advertisements
Similar presentations
CPU Scheduling.
Advertisements

Chapter 5: CPU Scheduling
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2 nd Edition Chapter 6a: CPU Scheduling.
 Basic Concepts  Scheduling Criteria  Scheduling Algorithms.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Operating Systems Chapter 6
Chap 5 Process Scheduling. Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a.
Chapter 5 CPU Scheduling. CPU Scheduling Topics: Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
CPU Scheduling CS 3100 CPU Scheduling1. Objectives To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various.
CPU Scheduling Algorithms
Chapter 3: CPU Scheduling
CS 311 – Lecture 23 Outline Kernel – Process subsystem Process scheduling Scheduling algorithms User mode and kernel mode Lecture 231CS Operating.
02/06/2008CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Scheduling in Batch Systems
Chapter 6: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 6: CPU Scheduling Basic.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
What we will cover…  CPU Scheduling  Basic Concepts  Scheduling Criteria  Scheduling Algorithms  Evaluations 1-1 Lecture 4.
Chapter 5-CPU Scheduling
02/11/2004CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Modified from Silberschatz, Galvin and Gagne ©2009 Lecture 8 Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Basic Concepts Maximum CPU utilization.
Chapter 6: CPU Scheduling
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
CS212: OPERATING SYSTEM Lecture 3: Process Scheduling 1.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Scheduling. Alternating Sequence of CPU And I/O Bursts.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times.
CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
Chapter 5: Process Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Basic Concepts Maximum CPU utilization can be obtained.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 11/29/2015 Chapter 6: CPU Scheduling l Basic Concepts l Scheduling Criteria l Scheduling Algorithms l Multiple-Processor Scheduling l Real-Time Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 5: CPU Scheduling Basic.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 5 CPU Scheduling Slide 1 Chapter 5 CPU Scheduling.
6.1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Chapter 4 CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
Lecture 4 CPU scheduling. Basic Concepts Single Process  one process at a time Maximum CPU utilization obtained with multiprogramming CPU idle :waiting.
CPU Scheduling G.Anuradha Reference : Galvin. CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time.
1 Module 5: Scheduling CPU Scheduling Scheduling Algorithms Reading: Chapter
Basic Concepts Maximum CPU utilization obtained with multiprogramming
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
CPU Scheduling Algorithms CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 Chapter 5: CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5a: CPU Scheduling
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
CPU Scheduling G.Anuradha
Module 5: CPU Scheduling
3: CPU Scheduling Basic Concepts Scheduling Criteria
Chapter5: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Module 5: CPU Scheduling
Chapter 6: CPU Scheduling
CPU Scheduling: Basic Concepts
Module 5: CPU Scheduling
Presentation transcript:

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Objectives To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various CPU-scheduling algorithms To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

5.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait CPU burst distribution

5.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Alternating Sequence of CPU And I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition CPU Scheduler Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them CPU scheduling decisions may take place when a process: 1.Switches from running to waiting state 2.Switches from running to ready state 3.Switches from waiting to ready 4.Terminates Scheduling under 1 and 4 is nonpreemptive All other scheduling is preemptive

5.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Dispatcher Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: switching context switching to user mode jumping to the proper location in the user program to restart that program Dispatch latency – time it takes for the dispatcher to stop one process and start another running

5.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Scheduling Criteria CPU utilization – keep the CPU as busy as possible Throughput – # of processes that complete their execution per time unit Turnaround time – amount of time to execute a particular process Waiting time – amount of time a process has been waiting in the ready queue Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time- sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Scheduling Algorithm Optimization Criteria Max CPU utilization Max throughput Min turnaround time Min waiting time Min response time

5.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition First-Come, First-Served (FCFS) Scheduling ProcessBurst Time P 1 24 P 2 3 P 3 3 Suppose that the processes arrive in the order: P 1, P 2, P 3 The Gantt Chart for the schedule is: Waiting time for P 1 = 0; P 2 = 24; P 3 = 27 Average waiting time: ( )/3 = 17 P1P1 P2P2 P3P

5.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FCFS Scheduling (Cont) Suppose that the processes arrive in the order P 2, P 3, P 1 The Gantt chart for the schedule is: Waiting time for P 1 = 6; P 2 = 0 ; P 3 = 3 Average waiting time: ( )/3 = 3 Much better than previous case Convoy effect short process behind long process P1P1 P3P3 P2P

5.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Shortest-Job-First (SJF) Scheduling Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time SJF is optimal – gives minimum average waiting time for a given set of processes The difficulty is knowing the length of the next CPU request

5.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Example of SJF ProcessArrival TimeBurst Time P P P P SJF scheduling chart Average waiting time = ( ) / 4 = 7 P4P4 P3P3 P1P P2P2 24

5.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Determining Length of Next CPU Burst Can only estimate the length Can be done by using the length of previous CPU bursts, using exponential averaging

5.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Prediction of the Length of the Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Examples of Exponential Averaging  =0  n+1 =  n Recent history does not count  =1  n+1 =  t n Only the actual last CPU burst counts If we expand the formula, we get:  n+1 =  t n +(1 -  )  t n -1 + … +(1 -  ) j  t n -j + … +(1 -  ) n +1  0 Since both  and (1 -  ) are less than or equal to 1, each successive term has less weight than its predecessor

5.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Priority Scheduling A priority number (integer) is associated with each process The CPU is allocated to the process with the highest priority (smallest integer  highest priority) Preemptive nonpreemptive SJF is a priority scheduling where priority is the predicted next CPU burst time Problem  Starvation – low priority processes may never execute Solution  Aging – as time progresses increase the priority of the process

5.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Round Robin (RR) Each process gets a small unit of CPU time (time quantum), usually milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. Performance q large  FIFO q small  q must be large with respect to context switch, otherwise overhead is too high

5.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Example of RR with Time Quantum = 4 ProcessBurst Time P 1 24 P 2 3 P 3 3 The Gantt chart is: Typically, higher average turnaround than SJF, but better response P1P1 P2P2 P3P3 P1P1 P1P1 P1P1 P1P1 P1P

5.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Time Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Turnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Multilevel Queue Ready queue is partitioned into separate queues: foreground (interactive) background (batch) Each queue has its own scheduling algorithm foreground – RR background – FCFS Scheduling must be done between the queues Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR 20% to background in FCFS

5.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Multilevel Queue Scheduling

5.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Multilevel Feedback Queue A process can move between the various queues; aging can be implemented this way Multilevel-feedback-queue scheduler defined by the following parameters: number of queues scheduling algorithms for each queue method used to determine when to upgrade a process method used to determine when to demote a process method used to determine which queue a process will enter when that process needs service

5.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Example of Multilevel Feedback Queue Three queues: Q 0 – RR with time quantum 8 milliseconds Q 1 – RR time quantum 16 milliseconds Q 2 – FCFS Scheduling A new job enters queue Q 0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q 1. At Q 1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q 2.

5.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Multilevel Feedback Queues