Zurich, September 18 th 2007 Adrianne SlyzUniversity of Oxford Lessons on ISM modelling from kiloparsec scale simulations.

Slides:



Advertisements
Similar presentations
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Advertisements

Star Formation Why is the sunset red? The stuff between the stars
Effects of galaxy formation on dark matter haloes Susana Pedrosa Patricia Tissera, Cecilia Scannapieco Chile 2010.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University Hubble Fellows Symposium, April 21, 2006 Collaborators: Rob Crockett (Princeton),
GALAXIES IN DIFFERENT ENVIRONMENTS: VOIDS TO CLUSTERS:  Simulations will require to model full physics:  Cooling, heating, star formation feedbacks…
Properties of the Structures formed by Parker-Jeans Instability Y.M. Seo 1, S.S. Hong 1, S.M. Lee 2 and J. Kim 3 1 ASTRONOMY, SEOUL NATIONAL UNIVERSITY.
Numerical issues in SPH simulations of disk galaxy formation Tobias Kaufmann, Lucio Mayer, Ben Moore, Joachim Stadel University of Zürich Institute for.
Anatoly Klypin New Mexico State University Also: Stefan Gottloeber (Astrophysikalisches Institut Potsdam ) Gustavo Yepes (UAM, Madrid) Andrey Kravtsov.
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
The two phases of massive galaxy formation Thorsten Naab MPA, Garching UCSC, August, 2010.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
A Unified, Merger-Driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids Hopkins,
Simon Portegies Zwart (Univ. Amsterdam with 2 GRAPE-6 boards)
Simulating the Cooling Flow of Cool-Core Clusters Yuan Li Advisor: Greg Bryan Department of Astronomy, Columbia University July 2011.
Magnetic Jets and Lobes in Cosmological MHD Hui Li Los Alamos National Laboratory NSF/DOE Center for Magnetic Self-Organization (CMSO) Collaborators: H.
Gustavo Yepes Universidad Autónoma de Madrid KNAW International Colloquium on COSMIC VOIDS Amsterdam 2006.
Ralph Pudritz McMaster University, Origins Institute Numerical Models of Phil’s World: Recent Progress Dense Cores in Dark Clouds LXV Oct , 2009.
Cosmological N-body simulations of structure formation Jürg Diemand, Ben Moore and Joachim Stadel, University of Zurich.
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
Jonathan Slavin Harvard-Smithsonian CfA
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Modelling Dwarf Galaxies with a Multi-Phase ISM Stefan Harfst 1,2 with: Ch. Theis 3,2 and G. Hensler 3,2 G. Hensler 3,2 1 Rochester Institute of Technology,
Estimate* the Total Mechanical Feedback Energy in Massive Clusters Bill Mathews & Fulai Guo University of California, Santa Cruz *~ ±15-20% version 2.
1 Lecture 2: Gas Cooling and Star Formation. How to make a galaxy Create Hydrogen, Helium and dark matter in a Big Bang Allow quantum fluctuations to.
Evolution in Lyman-alpha Emitters and Lyman-break Galaxies Masao Mori Theoretical Astrophysics division, Center for Computational Sciences, University.
Formation of the Galaxies: Current Issues Joe Silk University of Oxford Gainesville, October 2006.
(MNRAS 327, 610, 2001 & 347, 1234, 2004) David Churches, Mike Edmunds, Alistair Nelson - Physics & Astronomy, Cardiff University - Physics & Astronomy,
Superbubble Driven Outflows in Cosmological Galaxy Evolution Ben Keller (McMaster University) James Wadsley, Hugh Couchman CASCA 2015 Paper: astro-ph:
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
1 Enrique Vázquez-Semadeni Adriana Gazol CRyA UNAM, México Collaborators: Thierry Passot (OCA) Jongsoo Kim (KASI) Dongsu Ryu (Chungnam U.) Ricardo González.
Star Formation in Galaxies Yuexing Li (Columbia Univ. /AMNH) Mordecai Mac low (AMNH/Columbia) Ralf Klessen (AIP, Germany) John Dubinski (CITA) Zoltan Haiman.
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University / UC Santa Cruz Gas Accretion and Star Formation in Galaxies MPA/ESO/MPE/USM.
Galaxy Evolution in the Virgo Cluster Bernd Vollmer CDS, Observatoire de Strasbourg, France In collaboration with: P. Amram, C. Balkowski, R. Beck, A.
Dusty Dark Nebulae and the Origin of Stellar Masses Colloquium: STScI April 08.
Alyson Brooks Fairchild Postdoctoral Fellow in Theoretical Astrophysics Caltech In collaboration with C. Brook (JHI), F. Governato (UW), L. Mayer (ETH,
A Rotation Pattern with Two Inner LB Resonances
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Stellar Feedback Effects on Galaxy Formation Filippo Sigward Università di Firenze Dipartimento di Astronomia e Scienza dello Spazio Japan – Italy Joint.
Magnetic fields in the Galaxy via Faraday effect: Future prospects with ASKAP and the SKA Lisa Harvey-Smith Collaborators: Bryan CSIRO SKA Project ScientistGaensler.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
Ben Moore, Institute for Theoretical Physics, University of Zurich +Oscar Agertz, Roman Teyssier+ Galaxy formation: is the end in sight? Obergurgl, December.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Star Formation Why is the sunset red? The stuff between the stars
Spiral Triggering of Star Formation Ian Bonnell, Clare Dobbs Tom Robitaille, University of St Andrews Jim Pringle IoA, Cambridge.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
1 Galaxy Formation A quick overview of the key concepts.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
What determines the gas content of galaxies?. Galaxy formation - a reminder of the puzzle The fraction of baryons that are “cold” (stars+cold gas) is.
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
OWLS: OverWhelmingly Large Simulations The formation of galaxies and the evolution of the intergalactic medium.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Flow-Driven Formation of Molecular Clouds: Insights from Numerical Models The Cypress Cloud, Spitzer/GLIMPSE, FH et al. 09 Lee Hartmann Javier Ballesteros-Paredes.
Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters Yuan Li University of Michigan Collaborators: Greg L. Bryan (Columbia)
Towards Realistic Modeling of Massive Star Clusters Oleg Gnedin (University of Michigan) graduate student Hui Li.
Quenching, blackhole feedback and anisotropic thermal conduction
Presentation transcript:

Zurich, September 18 th 2007 Adrianne SlyzUniversity of Oxford Lessons on ISM modelling from kiloparsec scale simulations

Zurich, September 18 th 2007 What physical processes regulate … the rate at which gas turns into stars? starbursts centers of normal disks Kennicutt (1998) SFR Area ~ ∑ gas log Σ SFR (M sol yr -1 kpc -2 ) log Σ gas (M sol pc -2 ) 1.4

Zurich, September 18 th 2007 Link between density structure & star formation ?

Zurich, September 18 th 2007 Key insights from periodic box simulations in the 90 ’ s: 2. Isothermal and adiabatic turbulence decays quickly (within a sound crossing time) whether the medium is magnetized or not (Stone et al. 1998, Maclow et al. 1998, Padoan & Nordlund 1999) 1. Density structure of isothermal medium structured by supersonic, compressible turbulence is well described by a log-normal distribution whose dispersion reflects the Mach number of the medium (Vazquez-Semadeni 1994, Padoan, Nordlund & Jones 1997, Nordlund & Padoan 1999)

Zurich, September 18 th kpc Initial conditions ρ  = 1 at/cm 3 T = 10 5 K Turbulent velocity field imposed on large scales P(k) ∝ k -4 Homogeneous gas Periodic boundary conditions 1.28 kpc

Zurich, September 18 th kpc Initial conditions ρ  = 1 at/cm 3 T = 10 5 K Turbulent velocity field imposed on large scales P(k) ∝ k -4 Homogeneous gas Periodic boundary conditions 1.28 kpc

Zurich, September 18 th 2007 Radiative cooling White and Sarazin (1987), Rosen and Bregman (1995) T (Kelvin) log 10  (T) ergs cm 3 /s

Zurich, September 18 th 2007 PDF = 1 ___ (2 π ) 1/2 σ exp - (ln ρ  - ) 2 2 σ  2 with σ = ln 1 + (M rms /2) 2 (Padoan & Nordlund 2002) [] () log 10 (normalized PDF) log 10  gas -

Zurich, September 18 th 2007 PDF = 1 ___ (2 π ) 1/2 σ exp - (ln ρ  - ) 2 2 σ  2 with σ = ln 1 + (M rms /2) 2 (Padoan & Nordlund 2002) [] () log 10 (normalized PDF) log 10  gas -

Zurich, September 18 th 2007 PDF = 1 ___ (2 π ) 1/2 σ exp - (ln ρ  - ) 2 2 σ  2 with σ = ln 1 + (M rms /2) 2 (Padoan & Nordlund 2002) [] () log 10 (normalized PDF) log 10  gas -

Zurich, September 18 th 2007 PDF = 1 ___ (2 π ) 1/2 σ exp - (ln ρ  - ) 2 2 σ  2 with σ = ln 1 + (M rms /2) 2 (Padoan & Nordlund 2002) [] () log 10 (normalized PDF) log 10  gas -

Zurich, September 18 th 2007 PDF = 1 ___ (2 π ) 1/2 σ exp - (ln ρ  - ) 2 2 σ  2 with σ = ln 1 + (M rms /2) 2 (Padoan & Nordlund 2002) [] () log 10 (normalized PDF) log 10  gas -

Zurich, September 18 th 2007 ∞ f c =  ∫ ρ PDF d ρ ∫ ρ th 0 ∞ fraction of mass above  th Universal PDF? Is there a clear density threshold for star formation? (Elmegreen 2002 Krumholz & McKee 2005 Wada & Norman 2007) Open questions

Zurich, September 18 th 2007 Log-normal fit to high density end of run with stars, self-gravity, fbk ⇒ ρ peak ≈ 50 at cm -3 = 3.9 σ  = 1.22 ⇒ M rms = 3.1 PDF = 1___ (2 π ) 1/2 σ exp - (ln ρ - ) 2 2 σ 2 ( ) log 10  gas (at/cm 3 ) log 10 (normalized PDF)

Zurich, September 18 th 2007 Avillez & Breitschwerdt 2005 PDF for SN driven stratified segment of a disk 1 X 1 X 20 kpc x-y plane density P robability D istribution F unction ( PDF ) n (cm 3 ) PDF Z (kpc)

Zurich, September 18 th 2007 Joung & MacLow 2006 PDFs for gas near midplane 4 pc subbox 125 pc subbox PDFs in different subbox sizes for SN driven stratified segment of a disk 0.5 X 0.5 X 10 kpc disk segment

Zurich, September 18 th 2007 New generation of ISM simulations density temperaturepressure stars  (M sol pc 3 ) PDF log Temp edge-on view face-on view 3D isolated disks, pc resolution Tasker & Bryan 2006

Zurich, September 18 th 2007 Different philosophies for adding supernovae explosions in ISM models m * =  ρ gas V cell ∆ t/t dyn + Stellar Initial Mass Function Calculate energy and mass returned to interstellar medium via supernovae and stellar winds Model star formation Model observed supernovae rates & mimic their distribution (e.g. isolated, clustered) e.g. SN frequency Milky Way Galaxy:1/330 yr -1 for Type I and 1/44 yr -1 for Type II (Tammann et al. 1994) Scale heights: Type I :325 pc (Heiles 1987) Type II :90 pc Power law distribution of superbubbles: dN B ~ n * -2 dn * (Kennicutt et al. 1989, McKee & Williams 1997) A B

Zurich, September 18 th 2007 Supernovae feedback in Joung & Maclow ) Identify supernovae site (stick to the observations) 2.) Grow a sphere at that site until it encloses 60 M sun. Radius of this sphere R exp ~ 7 pc to 50 pc 3.) Redistribute mass in that sphere so that it has uniform density  = 3M exp /(4  R exp 3 ) 4.) Inject thermal energy E SN = ergs evenly into the sphere M exp = 60 M sun R exp NO mass ever removed to form a star B

Zurich, September 18 th 2007 Identify Jeans unstable boxes M box /M J > 1 where M J = <  J 3  = avg density in box J = (  /G<  ) 1/2  tot  tot = ( 2 + 1/3<  2 ) 1/2 (Chandrasekhar 1951) SFR =  M box /t ff where  = 0.3 or 1  = 1  = 0.3 ~ 1 order of magnitude predictions SFRs derived from input SN rates Compare estimated SFR to input SN rates Joung & MacLow 2006 (2 input supernovae rates: assuming 130 and 200 M sol required per SN)

Zurich, September 18 th 2007 Gotoh & Kraichnan (1993) found power law PDFs for 1D sims of Burgers flows ⇒ infinitely compressible flows no fbk, with s-g M rms =11.8 M rms =5.1 M rms =5.2 M rms =5.8 Is that because they ignore self-gravity in their model? (Slyz et al. 2005)

Zurich, September 18 th 2007  v contracting t cool cooling rapidly  >  thresh -> dense T cold m * = ε ρ gas V cell ∆ t/t dyn Heyer et al if the gas satifies: (FCRAO CO survey) Cen & Ostriker 1992 First make stars... A

Zurich, September 18 th 2007 Then do stellar feedback... Calculate a time dependent SFR: Stellar winds: f ∆ m SF returned to gas Supernovae:  ∆ m SF c 2 injected as thermal energy  m SF (t) = m * (t-t * )/ т 2 exp [-(t-t * )/ τ ] where τ = max(t dyn, 10 Myr) Cen & Ostriker 1992  1.28 kpc  Myr if v=10 km/s f,  determined by IMF

Zurich, September 18 th Myr 22 Myr 41 Myr Slyz, Devriendt, Bryan, Silk (2005) Non-instantaneous feedback pressuretemp density

Zurich, September 18 th Myr 22 Myr 41 Myr Slyz, Devriendt, Bryan, Silk (2005) Instantaneous feedback pressuretemp density

Zurich, September 18 th 2007 When put supernova thermal energy E SN = ergs in dense regions most of the energy is quickly radiated away? Get neither thermal or dynamical heating (Katz 1992) Fixes: 1)artificial time delay in cooling (Gerritsen 1997; Thacker & Couchman 2001; Governato et al. 2006) 2)assign explosion energy to fluid parcels as pure kinetic energy (Navarro & White 1993) 3)introduce a thermalization efficiency whereby assign some fraction of supernova energy as kinetic and some as thermal (Navarro & White 1993, Hernquist & Mihos 1995) 4)sub-grid models of multi-phase ISM (Yepes et al. 1999, Springel & Hernquist 2003) Is this the same old story... ?

Zurich, September 18 th 2007 Time evolution of density PDF green: inst fbk, black: non-inst fbk

Zurich, September 18 th 2007 Time evolution of energy spectra compressible solenoidal ratio ∇ ⋅ v sol = 0 ∇ ✘ v com = 0 no s-g no fbk s-g no fbk no s-g fbk s-g fbk

Zurich, September 18 th 2007 Time evolution of energy spectra compressible solenoidal ratio ∇ ⋅ v sol = 0 ∇ ✘ v com = 0 no s-g no fbk s-g no fbk no s-g fbk s-g fbk Instantaneous feedback

Zurich, September 18 th 2007 Comparison of inputs into Silk prescription with non-instantaneous fbk, with gravity with non-instantaneous fbk, no gravity Different physics no fbk, no gravity no fbk, with gravity SFR (M sun /yr) Porosity log 10 (M sun /pc 3 ) MW (km/s) time (Myr) with instantaneous fbk, with gravity Q = SFR G -1/2 ρ gas -3/2 ( σ gas / σ f )

density temp pressure temp pressure Slyz, Devriendt, Bryan, Silk (2005) 4.5 Myr 22 Myr 41 Myr time (Myr) non-instantaneous feedback instantaneous feedback SFR (M sun /yr) Zurich, September 18 th 2007 Effect on star formation rate

Zurich, September 18 th 2007 Time evolution of density PDF green: inst fbk, black: non-inst fbk

Zurich, September 18 th 2007 Vazquez-Semadeni, Gazol, Scalo 2000 log  log (number of cells) How to erase a thermal instability… 1 kpc 2 box  >  thresh   v < 0 heat for 6 X 10 6 yrs to mimic « photo- ionization » P(k) ∝ k -4 vs Small scale forcing Large scale forcing

Zurich, September 18 th 2007 Time evolution of density PDF non-instantaneous feedback run

Zurich, September 18 th 2007 Time evolution of density PDF non-instantaneous feedback run SFR ~85 Myr Time →

Zurich, September 18 th 2007 Time evolution of density PDF non-instantaneous feedback run

Zurich, September 18 th 2007 Time evolution of density PDF green: inst fbk, black: non-inst fbk

Zurich, September 18 th 2007 Time evolution of thermal phase diagrams Initial conditions

Zurich, September 18 th 2007 Time evolution of thermal phase diagrams Initial conditions

Zurich, September 18 th 2007 Thermally unstable regime

Zurich, September 18 th 2007 Lines of constant pressure (k B -1 cm -3 K)

Zurich, September 18 th D cut Density, pressure x-velocity 2D pressure map Accretion shock! X (kpc)

Zurich, September 18 th 2007 Different philosophies for adding supernovae explosions in ISM models m * =  ρ gas V cell ∆ t/t dyn + Stellar Initial Mass Function Calculate energy and mass returned to interstellar medium via supernovae and stellar winds Model star formation Model observed supernovae rates & mimic their distribution (e.g. isolated, clustered) e.g. SN frequency Milky Way Galaxy:1/330 yr -1 for Type I and 1/44 yr -1 for Type II (Tammann et al. 1994) Scale heights: Type I :325 pc (Heiles 1987) Type II :90 pc Power law distribution of superbubbles: dN B ~ n * -2 dn * (Kennicutt et al. 1989, McKee & Williams 1997) A B

Zurich, September 18 th 2007 How can we begin to capture the complicated gas physics in a cosmological simulation? HORIZON Marenostrum Simulation ~ 1 billion DM particles ~1 billion cell root grid (3 -6 AMR levels) 50h -1 Mpc ~ 1.5 kpc physical resolution

Zurich, September 18 th 2007 e.g. For a given star formation rate do a high res simulation of a stratified disk to measure the efficiency of the energy transfer of a superwind, then use result as a subgrid model in a cosmological simulation. Enourmous parameter space! How many boxes do you have to simulate to capture conditions of ISM in different environments, at different redshifts, with different IMFs etc. How to make progress? Run many local models at high resolution and use them to construct subgrid-models 1

9 h -1 Mpc spatial resolution ~ 1 pc (physical) on finest level 3 h -1 Mpc 128 root grid, 3 nested grids AMR refinement levels AMR « resimulations » … Zurich, September 18 th 2007 Slyz & Devriendt (in prep) 2

Zurich, September 18 th 2007 No single density threshold  th for gravitational collapse? small subbox ~ 4 pc large subbox ~ 32 pc  th depends on scale on which collapse occurs Joung & Maclow 2006

Zurich, September 18 th 2007