1212 / mhj BM/i 2 Visualization of Diffusion Tensor Imaging Guus Berenschot May 2003 Supervisor: Bart ter Haar Romeny Daily Supervisor: Anna Vilanova i.

Slides:



Advertisements
Similar presentations
Sauber et al.: Multifield-Graphs Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data Natascha Sauber, Holger Theisel,
Advertisements

Hybrid Visualization for White Matter Tracts using Triangle Strips and Point Sprites D. Merhof 1,2, M. Sonntag 1, F. Enders 1,2, C. Nimsky 2, P. Hastreiter.
NA-MIC National Alliance for Medical Image Computing © 2010, All Rights Reserved Diffusion Tensor Imaging Tutorial Sonia Pujol, Ph.D.
NA-MIC National Alliance for Medical Image Computing Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory.
NA-MIC National Alliance for Medical Image Computing © 2010, All Rights Reserved Diffusion Tensor Imaging Tutorial Sonia Pujol, Ph.D.
Neuro-Imaging High Resolution Ex-Vivo MRI Ex-Vivo DTI of Brain Stem
Technische universiteit eindhoven /department of biomedical engineering Segmentation Techniques for the Visible mouse By Virjanand Panday Supervisor: B.M.
1 Detecting Subtle Changes in Structure Chris Rorden –Diffusion Tensor Imaging Measuring white matter integrity Tractography and analysis.
Methods for Medical Imaging– Prof. G. Baselli 2012 Diffusion weighted MRI and DTI tractography Maria Giulia Preti
National Alliance for Medical Image Computing Diffusion Weighted MRI.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
DTI group (Pitt) Instructor: Kevin Chan Kaitlyn Litcofsky & Toshiki Tazoe 7/12/2012.
DIFFUSION TENSOR IMAGING
Mitglied der Helmholtz-Gemeinschaft Diffusion MRI in the Neurosciences N. Jon Shah Institute of Neuroscience and Medicine – 4 Research Centre Juelich
Diffusion Tensor MRI And Fiber Tacking Presented By: Eng. Inas Yassine.
New Progresses of DTI-Map, a Program for DTI Computation and Fiber Tracking Hangyi Jiang, Peter van Zijl, Susumu Mori Dept. of Radiology Johns Hopkins.
Reproducibility of diffusion tractography E Heiervang 1,2, TEJ Behrens 1, CEM Mackay 3, MD Robson 3, H Johansen-Berg 1 1 Centre for Functional MRI of the.
DTI-Based White Matter Fiber Analysis and Visualization Jun Zhang, Ph.D. Laboratory for Computational Medical Imaging & Data Analysis Laboratory for High.
Introduction to diffusion MRI
Diffusion Physics H 2 O in the body is always in random motion due to thermal agitation B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen.
COMPRESSIVE SENSING IN DT-MRI Daniele Perrone 1, Jan Aelterman 1, Aleksandra Pižurica 1, Alexander Leemans 2 and Wilfried Philips 1 1 Ghent University.
Tensor Data Visualization Mengxia Zhu. Tensor data A tensor is a multivariate quantity  Scalar is a tensor of rank zero s = s(x,y,z)  Vector is a tensor.
05/19/11Why’n’how | Diffusion model fitting and tractography0/25 Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula.
Fully Automatic Blood vessel Branch Labeling Lei Chen Supervisors: Ir. Jan Bruijns Prof. Bart M. ter Haar Romeny.
Matching a 3D Active Shape Model on sparse cardiac image data, a comparison of two methods Marleen Engels Supervised by: dr. ir. H.C. van Assen Committee:
The structural organization of the Brain Gray matter: nerve cell bodies (neurons), glial cells, capillaries, and short nerve cell extensions (axons and.
/mhj 1212 Introduction Diffusion Tensor Imaging (DTI) is a fairly new Magnetic Resonance Imaging technique. It shows the diffusion (i.e. random motion)
Diffusion Tensor Imaging (DTI) is becoming a routine technique to study white matter properties and alterations of fiber integrity due to pathology. The.
Image Registration Narendhran Vijayakumar (Naren) 12/17/2007 Department of Electrical and Computer Engineering 1.
USING ANISOTROPIC DIFFUSION TO TRACK NEURAL FIBERS Sarah Neyer NASA/JPL CSUN PAIR Advisor Dr. A. Alekseenko.
Tensor Field Visualization
Fiber Tracking Techniques in Magnetic Resonance Diffusion Tensor Imaging Grace Michaels CSUN, Computer Science Junior.
ITUppsala universitet Data representation and fundamental algorithms Filip Malmberg
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL FADTTS: Functional Analysis of Diffusion Tensor Tract Statistics Hongtu Zhu, Ph.D. Department of Biostatistics.
Brain Lab Imaging Didactics
Trajectory Physics Based Fibertracking in Diffusion Tensor Magnetic Resonance Imaging Garrett Jenkinson, Advisor: José Moura, Graduate Student: Hsun-Hsien.
Visualization of Fibers at Risk for Neuronal Tract Injury in Early MS by Streamtube Diffusion Tractography at 3 Tesla Jack H Simon 1 David E Miller 1 Mark.
Sparse Shape Representation using the Laplace-Beltrami Eigenfunctions and Its Application to Modeling Subcortical Structures Xuejiao Chen.
Visualizing Fiber Tracts in the Brain Using Diffusion Tensor Data Masters Project Presentation Yoshihito Yagi Thursday, July 28 th, 10:00 a.m. 499 Dirac.
Ramifications of Isotropic Sampling and Acquisition Orientation on DTI Analyses David H. Laidlaw 1, Song Zhang 1, Mark Bastin 2,3, Stephen Correia 4, Stephen.
Processing HARDI Data to Recover Crossing Fibers Maxime Descoteaux PhD student Advisor: Rachid Deriche Odyssée Laboratory, INRIA/ENPC/ENS, INRIA Sophia-Antipolis,
1 Multi-valued Geodesic based Fiber Tracking for Diffusion Tensor Imaging Neda Sepasian Supervised by Prof. Bart ter Haar Romeny, Dr. Anna Vilanova Bartoli.
NA-MIC National Alliance for Medical Image Computing Validation of DTI Analysis Guido Gerig, Clement Vachet, Isabelle Corouge, Casey.
1 Interactive Thickness Visualization of Articular Cartilage Author :Matej Mlejnek, Anna Vilanova,Meister Eduard GröllerMatej MlejnekAnna VilanovaMeister.
References: [1]S.M. Smith et al. (2004) Advances in functional and structural MR image analysis and implementation in FSL. Neuroimage 23: [2]S.M.
Visualization of Anatomic Covariance Tensor Fields Gordon L. Kindlmann, David M. Weinstein, Agatha D. Lee, Arthur W. Toga, and Paul M. Thompson Presented.
Generalized Tensor-Based Morphometry (TBM) for the analysis of brain MRI and DTI Natasha Leporé, Laboratory of Neuro Imaging at UCLA.
Luke Bloy1, Ragini Verma2 The Section of Biomedical Image Analysis
12 mhj/ Optimal Color Representation of Multi Spectral Data M.L.H. van Driel s Supervisors: P. Sereda Prof. B.M. ter Haar Romeny.
Exploring Peritumoral White Matter Fibers for Neurosurgical Planning Sonia Pujol, Ph.D. Ron Kikinis, M.D. Surgical Planning Laboratory Harvard University.
NA-MIC National Alliance for Medical Image Computing Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory.
Strategies for Direct Volume Rendering of Diffusion Tensor Fields Gordon Kindlmann, David Weinstein, and David Hart Presented by Chris Kuck.
BMI2 SS08 – Class 7 “functional MRI” Slide 1 Biomedical Imaging 2 Class 7 – Functional Magnetic Resonance Imaging (fMRI) Diffusion-Weighted Imaging (DWI)
Neuroimaging with MRI Dr Mohamed El Safwany, MD..
Diffusion Tensor Analysis in Slicer3
Sonia Pujol, PhD -1- National Alliance for Medical Image Computing Neuroimage Analysis Center Diffusion Tensor Imaging tutorial Sonia Pujol, Ph.D. Surgical.
Subjects are registered to a template using affine transformations. These affine transformations are used to align the tracts passing through the splenium.
Diffusion Tensor MRI From Deterministic to Probabilistic Modelling
DIFFUSION TENSOR IMAGING AND TRACTOGRAPHY. Introduction Diffusion- random molecular motion also known as Brownian movement Biological systems depend on.
Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio B.
Diffusion Tensor Imaging
Conclusion/Discussion
Introduction to diffusion MRI
Introduction to diffusion MRI
Visualizing Diffusion Tensor Imaging Data with Merging Ellipsoids
Introduction to diffusion MRI
Human Brain Mapping Conference 2003 # 653
Wei Chen1, Song Zhang2, Stephan Correia3, and David S. Ebert4
Tensor Visualization Chap. 7 October 21, 2008 Jie Zhang Copyright ©
Representative DTI fractional anisotropy (FA) and color vector map images of patient 9 with a left parietal angioma. Representative DTI fractional anisotropy.
Presentation transcript:

1212 / mhj BM/i 2 Visualization of Diffusion Tensor Imaging Guus Berenschot May 2003 Supervisor: Bart ter Haar Romeny Daily Supervisor: Anna Vilanova i Bartroli Other committee members: Carola van Pul, Klaas Nicolay and Peter Hilbers

1212 / mhj BM/i 2 6/10/20152 Contents Introduction Diffusion Tensor Imaging (DTI) Visualization Tool for DTI Demonstration Conclusion and Future Work

1212 / mhj BM/i 2 6/10/20153 Introduction Diffusion Tensor Imaging Diffusion is the random motion of molecules, and is characterized by a diffusion coefficient D. In tissue this diffusion hindered by physical barriers. The diffusion coefficient is called Apparent Diffusion Coefficient (ADC)

1212 / mhj BM/i 2 6/10/20154 Diffusion Tensor Imaging is a Magnetic Resonance Imaging (MRI) technique. DTI measures the ADC in 6 directions and computes a symmetric diffusion tensor (D) of this: This diffusion tensor is defined for each voxel in the 3D dataset Introduction Diffusion Tensor Imaging

1212 / mhj BM/i 2 6/10/20155 Diagonalization Diffusion Tensor Diagonalization of this tensor provides three eigenvectors (ev 1, ev 2 and ev 3 ) with three corresponding eigenvalues (λ 1, λ 2 and λ 3 ) ev 1 λ1 ev 2 λ 2 ev 3 λ 3

1212 / mhj BM/i 2 6/10/20156 Anisotropy Indices Linear case: Planar case: Isotropic case:

1212 / mhj BM/i 2 6/10/20157 Problem Definition How to extract meaningful information of a 3D DTI dataset??? –Neonatal brain (Maxima Medical Center, Veldhoven) –Muscles (Magnetic Resonance Laboratory)

1212 / mhj BM/i 2 6/10/20158 Visualization Tool For DTI Anatomical reference Displaying local tensor information Displaying global tensor information Improvements to existing techniques

1212 / mhj BM/i 2 6/10/20159 Multi Planar Reconstruction Planes Anatomical reference Displaying local tensor information in 2D slice

1212 / mhj BM/i 2 6/10/ Anisotropy Indices Colorcoding anisotropy indices

1212 / mhj BM/i 2 6/10/ Colorcoding Main Diffusion Direction Colorcoding directions Intensity color scaled with anisotropy index A P RL F H Pajevic et al. 1997

1212 / mhj BM/i 2 6/10/ Glyphing Glyphs are icons that represent the local tensor information Two types of glyphs can be displayed: –Ellipsoids –Cuboids (Worth et al., 1998)

1212 / mhj BM/i 2 6/10/ Cuboids

1212 / mhj BM/i 2 6/10/ Fiber Tracking: Introduction Fiber tracking simplifies the tensor field to the vector field of the main eigenvector This vector field is made continuous by interpolation Consider this vector field as a velocity field and drop a free particle on it This particle will follow a trajectory The found trajectory can be seen as a bundle of fibers Xue et al. 1999, Conturo et al. 1999, Mori et al. 1999

1212 / mhj BM/i 2 6/10/ Tracking The tracking can be seen as solving the following integral: To solve this integral we use a second order Runge Kutta integration

1212 / mhj BM/i 2 6/10/ Seed Points Manual definition of a seed point or seed region Start tracking in all voxels and keep the trajectories that pass a certain region Stopping Criteria Linear Anisotropy (Cl) falls below a certain threshold Angle in a fiber is too big

1212 / mhj BM/i 2 6/10/ Fiber Tracking In Healthy Volunteer Optical tractCorpus Callosum

1212 / mhj BM/i 2 6/10/ Patient with a tumor Mouse muscle Neonatal brain

1212 / mhj BM/i 2 6/10/ Surface Building Fiber tracking gives problems in regions with planar anisotropy; the main eigenvector is not reliable Planar anisotropy can be due to kissing crossing or branching fibers

1212 / mhj BM/i 2 6/10/ Surface Building If we enter a region with planar anisotropy: follow all directions defined by local plane and display a surface here If anisotropy is linear again: do the common fiber tracking.

1212 / mhj BM/i 2 6/10/ Demonstration

1212 / mhj BM/i 2 6/10/ Conclusion The visualization tool is considered as very useful by the MMC and the MRL Results of fiber tracking in neonatal brain is promising Future Work Seeding is biased Noisy data-> smoothing Quantitative information of fibers

1212 / mhj BM/i 2 6/10/ Thanks Anna Vilanova i Bartroli (daily supervisor) Bart ter Haar Romeny (supervisor) Gustav Strijkers and Anneriet Heemskerk (MRL) Carola van Pul and Maurice Jansen (MMC) George Roos and Jan Buijs (radiologist and neonatologist MMC) Klaas Nicolay and Peter Hilbers (committee members)