Programming Language Semantics Denotational Semantics Chapter 5
Outline Least fixed points on relations Motivation Denotational Semantics –Least fixed points Equivalence of Semantics Complete partial orders and continuous functions
Operators and their least fixed points For a set of rule instances R –R(B)={y | X B, X/y R} Proposition 4.11 A set B is closed under R if R(B) B R is monotonic –A B R(A) R(B) Define the sequence of sets –A 0 = R 0 ( ) = –A 1 = R 1 ( ) =R( ) –A 2 = R 2 ( ) =R(R( )) –…–… –A n = R n ( ) Define A = n A n
Proposition 4.12 (i)A is R-closed (ii)R(A) = A (iii)A is the least R-closed set Let fix(R) denotes the least fixed point of R Claim: fix(R)= n R n ( )=A 1.R(fix(R)) = fix(R) 2. X. R(X) = X fix(R) X Alternative Formulation
Motivation for Denotational Semantics Equivalence of commands –c 1 c 2 , ’ : ’ ’ The meaning of a command is a (partial) state transformer –C c 1 = { ( , ’) | ’ } –C c 2 = { ( , ’) | ’ } – c 1 c 2 C c 1 = C c 2 Denotational semantics –A a : N –B b : T –C c :
Denotational semantics A: Aexp ( N) B: Bexp ( T) C: Com ( ) Defined by structural induction
Denotational semantics of Aexp A: Aexp ( N) A n = {( , n) | } A X = {( , (X)) | } A a 0 +a 1 = {( , n 0 +n 1 ) | ( , n 0 ) A a 0 , ( ,n 1 ) A a 1 } A a 0 -a 1 = {( , n 0 -n 1 ) | ( , n 0 ) A a 0 , ( ,n 1 ) A a 1 } A a 0 a 1 = {( , n 0 n 1 ) | ( , n 0 ) A a 0 , ( ,n 1 ) A a 1 } Lemma: A a is a function
Denotational semantics of Aexp with A: Aexp ( N) A n = .n A X = . (X) A a 0 +a 1 = .( a 0 +A a 1 ) A a 0 -a 1 = .( a 0 -A a 1 ) A a 0 a 1 = .( a 0 A a 1 )
Denotational semantics of Bexp B: Bexp ( T) B true = {( , true) | } B false = {( , false) | } B a 0 =a 1 = {( , true) | & A a 0 =A a 1 } {( , false) | & A a 0 A a 1 } B a 0 a 1 = {( , true) | & A a 0 A a 1 } {( , false) | & A a 0 A a 1 } B b = {( , T t) | , ( , t) B b } B b 0 b 1 = {( , t 0 T t 1 ) | , ( , t 0 ) B b 0 , ( , t 1 ) B b 1 } B b 0 b 1 = {( , t 0 T t 1 ) | , ( , t 0 ) B b 0 , ( , t 1 ) B b 1 } Lemma: B b is a function
Denotational semantics of Com C: Com ( ) C skip = {( , ) | } C X:=a = {( , [n/X]) | & n=A a } C c 0 ;c 1 = C c 1 C c 0 C if b then c 0 else c 1 = {( , ’) | B b =true & ( , ’) C c 0 } {( , ’) | B b =false & ( , ’) C c 1 } C while b do c = ?
Denotational semantics of Com C: Com ( ) C if b then c 0 else c 1 = {( , ’) | B b =true & ( , ’) C c 0 } {( , ’) | B b =false & ( , ’) C c 1 } w = while b do c w if b then c;w else skip C w = {( , ’) | B b =true & ( , ’) C c;w } {( , ) | B b =false} = {( , ’) | B b =true & ( , ’) C w C c } {( , ) | B b =false} = {( , ’) | ( )=true & ( , ’) } {( , ) | ( ) =false}
Denotational semantics of Com C: Com ( ) = {( , ’) | ( )=true & ( , ’) } {( , ) | ( ) =false} ( ) = {( , ’) | ( )=true & ( , ’) } {( , ) | ( ) =false}= {( , ’)| ’’: ( )=true & ( , ’’) , ( ’’, ’) } {( , ) | ( ) =false} ( ) =
Denotational semantics of Com C: Com ( ) ( ) = {( , ’) | ( )=true & ( , ’) } {( , ) | ( ) =false}= {( , ’)| ’’: ( )=true & ( , ’’) , ( ’’, ’) } {( , ) | ( ) =false} ( ) = = R R={({ ( ’’, ’)}/ ( , ’)) | ( )=true & ( , ’’) } {( / ( , )) | ( ) =false} = fix(R)
Denotational semantics of Com C skip ={( , )| } C X:=a = {( , [n/X]) | & n=A a } C c 0 ;c 1 = C c 1 C c 0 C if b then c 0 else c 1 = {( , ’) | B b =true & ( , ’) C c 0 } {( , ’) | B b =false & ( , ’) C c 1 } C while b do c = fix( ) where ( ) = {( , ’) | B b =true & ( , ’) C c } {( , ) | B b =false}
Proposition 5.1 w = while b do c C w = C if b then c;w else skip
Equivalence of Semantics Lemma 5.3: For all a Aexp –A a ={( , n) | n}
Equivalence of Semantics Lemma 5.4: For all b Bexp –B b ={( , t) | t}
Equivalence of Semantics Lemma 5.6: For all c Com – ’ ( , ’) C c Theorem 5.7 For all c Com –C c = {( , ’) | ’ }
Partial Orders A partial order (p.o.) is a set P with a binary relation –reflexive p: p P. p p –transitive: p, q, r P. p q & q r p r –antisymmetric: p, q P. p q & q p p=q For a partial order (P, ) and a subset X P –p is an upper bound of X q X. q p –p is a least upper bound of X (denoted by X) if p is an upper bound of X For all upper bounds q of X: p q d 1 d 2 … d n = {d 1, d 2, …, d n }
Complete Partial Orders Let (D, ) be a partial order –An -chain is an increasing chain d 0 d 1 …d n .. –D is a complete partial order (c.p.o) if every - chain has a least upper bound –D is a complete partial order with if is a c.p.o. with a minimum element
Monotonic and Continus Functions A function f: D E between cpos D and E is monotonic if – d,d’ D.d d’ f(d) f(d’) –Such a function is continuous if for all chains d 0 d 1 …d n … in D: n f(d n ) = f( n d n )
Fixed Points Let f: D D be a continuous function on a cpo with D A fixed point of f is an element d D such that f(d) =d A pre fixed point of f is an element d D such that f(d) d Thm: fix(f) = n f n ( )
Missing Greatest lower bounds Knaster-Tarski Theorem Conclusion