L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

Slides:



Advertisements
Similar presentations
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Advertisements

The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
High-Mass Star-Forming Regions in the G333 Cloud Indra Bains & the DQS team.
Protostars, nebulas and Brown dwarfs
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
Studying circumstellar envelopes with ALMA
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Star formation across the mass spectrum Our understanding of low-mass (solar type with masses between 0.1 and 10 M SUN ) star formation has improved greatly.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Complex organic molecules in hot corinos
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Jan/2005Interstellar Ices-I1 Interstellar Ices-2 Ice Inventory Protostellar Environments Energetic Processing? Laboratory Simulations New Spitzer Satellite.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
Initial Conditions for Star Formation Neal J. Evans II.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
CONDITIONS IN DENSE INTERSTELLAR CLOUDS Paul F. Goldsmith Jet Propulsion Laboratory with thanks to Ted Bergin, Di Li, the SWAS team, and the Taurus Mapping.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
High-mass star forming regions: An ALMA view Riccardo Cesaroni INAF - Osservatorio Astrofisico di Arcetri.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Star Formation Why is the sunset red? The stuff between the stars
Studying Infall Neal J. Evans II.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
Chapter 11 The Interstellar Medium
Yes, Stars DO form by Gravitational Collapse Neal J. Evans II The University of Texas at Austin.
L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Chemistry and dynamics of the pulsating starless core Barnard 68 Matt Redman National University of Ireland, Galway Matt Redman NUI Galway.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Stellar NurseriesStages of Star Birth. The interstellar medium The space between the stars is not empty.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
Deuterium-Bearing Molecules in Dense Cores
In Search of More Massive Protostars
OBSERVATIONS OF BINARY PROTOSTARS
High Resolution Submm Observations of Massive Protostars
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
Chapter 11 The Interstellar Medium
Infrared study of a star forming region, L1251B
Announcements Observing sheets due today (you can hand them in to me).
Astrochemical modeling of Planck cold clump G
Presentation transcript:

L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk & Liseau, Serpens Core with VLT ANTU and ISAAC

L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Known Methods & Techniques What is the problem ? How to solve it ?

L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence What is the problem ? Theories may give different answers what to look for – but predictions include

L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence How to solve it ? or - how and where to look ? In dense interstellar clouds with infrared techniques !

L 4 - Stellar Evolution II: August-September, Protostars are the Holy Grail of infrared astronomy Any observational difficulties ?

L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence (Known) Methods & Techniques Radiation (1) Continuum (2) Spectral Lines

L 4 - Stellar Evolution II: August-September, (1)Continuum (Proto-)stellar photospheres Free-free gas emission Thermal radiation from (radiatively) heated dust grains To infer the total mass one needs Gas-Dust Relation [ generally assumed: m(g)/m(d) = 100 ] Thermal radiation from (radiatively) heated dust grains

L 4 - Stellar Evolution II: August-September, (1)Continuum Spectral Energy Distributions SEDs Observations and Theoretical Models Current Paradigm Adapted from van Zadelhoff 2002, PhD thesis Astronomical Taxonomy notice the spatial scales & time scales

L 4 - Stellar Evolution II: August-September, (1)Continuum Spectral Energy Distributions (SEDs) SED fitting Observations Theoretical models Adams, Lada & Shu 1987ApJ 312, protostar

L 4 - Stellar Evolution II: August-September, (1)Continuum Spatial Profile fitting Observations Theoretical models Butner et al ApJ 376, KAO 50  m 100  m IRS 5 L1551 residuals I / I peak radial offset ( ´´ )

L 4 - Stellar Evolution II: August-September, (1)Continuum Spatial Profile fitting Shirley et al ApJS 131, 249 FIR & submm SCUBA 850  m 450  m Observations Azimuthal Intensity Distribution

L 4 - Stellar Evolution II: August-September, Compare to theory of collapse (see L 3) Bonnor 1956 MNRAS 116, 351 centrally condensed flat distribution Shu 1977 extreme case

L 4 - Stellar Evolution II: August-September, See also L 1: Motte et al. made fits at 1.3 mm => mostly Bonnor-Ebert spheres (flat) and  Oph A with I(r) ~ r - 2 and furthermore obtained...

L 4 - Stellar Evolution II: August-September, Clump Mass Spectrum & IMF 1 clump - 1 star no further Fragmentation ? - see Eduardo (L 3) Motte et al. 1998, AA 336, 150 Also Johnstone et al. 2000, ApJ 545, 327

L 4 - Stellar Evolution II: August-September, (1)Continuum Spatial Profile fitting Firstly and only directly observed  ~ r profile Keck-I, K band (Hodapp 1998, ApJ 500, L 183) B 335 FIRS

L 4 - Stellar Evolution II: August-September, Harvey et al. 2003, ApJ 583, 809 Infall ? ``YES´´ Inside-out ? ``NO´´ IRAM-PdB Interferometer 1.2 mm 3 mm

L 4 - Stellar Evolution II: August-September, (1)Continuum Major pitfalls/caveats: Geometry - spheres vs disks Calorimetric vs `true´ Luminosities Dust Optical Depths (Properties) Temperatures (Dust and Gas) Observations Theoretical models Inhouse work, see, e.g. : Larsson et al White et al. 2000, AA

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines What lines – species ? (low-lying) Rotational Transitions in Molecules Physical Conditions of Excitation Cold ( T k ~ a few x 10 K ~ meV ) Large A V (no / little external radiation) and dense (n > 10 3 cm -3 ): collisional excitations dominate level populations ( if  << 1 ) mostly neutrals but CosmicRays => molecular ions and e -

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Why ? does not necessarily imply there’s `nothing´ there

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Theoretical profiles: cf. L3 Foster & Chevalier 1993, ApJ 416, 303 Ammonia NH 3 (a?) (b?) Symmetrical Profiles no, spatial resolution

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Theoretical profiles Leung & Brown 1977, ApJ 214, L73 Carbon monoxide CO = 12 C 16 O (a?) and Isotopes (b?) Asymmetrical Profiles cloud center offset...hmm..., needs to be verified

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (b) Optically thick lines Theoretical profiles Zhou et al. 1993, ApJ 404, 232Shu Infall Asymmetrical Profiles for negative temperature gradient cooler: less intensity warmer: more intensity los

L 4 - Stellar Evolution II: August-September, inside-out collapse (Shu 1977, ApJ 214, 488) (see: L 3) B 335 not from Shu model p = -1.5 p = -2 R inf = c s t inf  = -0.5  = 0 adapted from Hartstein & Liseau 1998, AA 332, 703

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (b) Optically thick lines Theoretical profiles Hartstein & Liseau 1998, AA 332, 703 Carbon Sulfide CS Observations + Asymmetrical Profiles high blue low red

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (b) Optically thick lines Observed & Theoretical profiles Hartstein & Liseau 1998, AA 332, 703 Example: Carbon Monoxide 13 CO Carbon Sulfide CS (non-)equilibrium and information content thermalised C 18 O 13 CO

L 4 - Stellar Evolution II: August-September, (2) Spectral Lines (b) Optically thick lines Carbon Sulfide CS Water Vapour H 2 O Observation: dependence of profiles on spatial resolution (``beam´´) oH 2 O (1-0) CS (2-1) 10´´ 20´´ 120´´ B 335 infall model 24´´ 38´´ 51´´

L 4 - Stellar Evolution II: August-September, Wilner et al. 2000, ApJ 544, L69 Inside – out collapse: wings Observation: no wings B 335 Observed + Theoretical Profiles Single Dish Interferometer

L 4 - Stellar Evolution II: August-September, (3) Continuum and Spectral Lines Theoretical profiles + Observations Inhouse, e.g.: Larsson et al. – Odin H 2 O + ground based Schöier et al. – ground based inc. chemistry  Oph A IRAS (  Oph east )... but steady state models.... of a highly dynamic situation... e.g. Stark et al. 2004, ApJ 608, 341

L 4 - Stellar Evolution II: August-September, Outflow contamination & confusion! `` finn fem fel ´´ Current Paradigm - ? Adapted from van Zadelhoff 2002, PhD thesis

L 4 - Stellar Evolution II: August-September, FOV = 2.5 X 2.5 amin 2 (0.2 X 0.2 pc 2 ) Serp SMM 1 (S68 FIRS 1)* Infall Candidate Outflow Source Disk Source * D = 310 pc ISO SWS & LWS + submm/mm Fitting the observed SED*: M env = 6 M o L = 140 L o * 2-D radiative transfer (Larsson et al. 2002, AA 386, 1055)

L 4 - Stellar Evolution II: August-September, Emission not from Disk Infalling Envelope but Outflow/Shocks Modeling the Line Emission

L 4 - Stellar Evolution II: August-September, Outflow contamination & confusion! Single Stars? `` finn fem fel ´´ Current Paradigm - ? Adapted from van Zadelhoff 2002, PhD thesis

L 4 - Stellar Evolution II: August-September, Number of Infall Candidates: Reasonable ? Expected ? * Object Classes and Lifetimes SFR of the solar neighbourhood Consistent picture? Magnus´ IMF talk * High mass starformation – cloud/cluster collapse

L 4 - Stellar Evolution II: August-September, L 4: conclusions a variety of observational techniques are exploited a number of collapse candidates have been found all are strong outflow sources multiplicity is common L 4: open questions How many collapse processes do occur in nature ? more than one ? which ? What is the `certain´ collapse tracer ? What spectral & spatial resolution is needed ? Are stars/BDs/planets formed differently ? How ?