CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Phylogenetic Reconstruction: Distance Matrix Methods Anders Gorm Pedersen Molecular Evolution Group Center for.

Slides:



Advertisements
Similar presentations
Computing a tree Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas.
Advertisements

Phylogenetic Tree A Phylogeny (Phylogenetic tree) or Evolutionary tree represents the evolutionary relationships among a set of organisms or groups of.
Bioinformatics Phylogenetic analysis and sequence alignment The concept of evolutionary tree Types of phylogenetic trees Measurements of genetic distances.
. Class 9: Phylogenetic Trees. The Tree of Life Evolution u Many theories of evolution u Basic idea: l speciation events lead to creation of different.
1 Dan Graur Methods of Tree Reconstruction. 2 3.
Computing a tree Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas.
Phylogenetics - Distance-Based Methods CIS 667 March 11, 2204.
Phylogenetic reconstruction
Phylogenetic trees Sushmita Roy BMI/CS 576 Sep 23 rd, 2014.
Molecular Evolution Revised 29/12/06
Tree Reconstruction.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
Lecture 7 – Algorithmic Approaches Justification: Any estimate of a phylogenetic tree has a large variance. Therefore, any tree that we can demonstrate.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Brief Introduction to the Theory of Evolution Anders Gorm Pedersen Molecular Evolution Group Center for Biological.
. Computational Genomics 5a Distance Based Trees Reconstruction (cont.) Modified by Benny Chor, from slides by Shlomo Moran and Ydo Wexler (IIT)
In addition to maximum parsimony (MP) and likelihood methods, pairwise distance methods form the third large group of methods to infer evolutionary trees.
Maximum Likelihood Flips usage of probability function A typical calculation: P(h|n,p) = C(h, n) * p h * (1-p) (n-h) The implied question: Given p of success.
CISC667, F05, Lec15, Liao1 CISC 667 Intro to Bioinformatics (Fall 2005) Phylogenetic Trees (II) Distance-based methods.
Phylogenetic Analysis. General comments on phylogenetics Phylogenetics is the branch of biology that deals with evolutionary relatedness Uses some measure.
Anders Gorm Pedersen Molecular Evolution Group
Multiple sequence alignment
. Class 9: Phylogenetic Trees. The Tree of Life D’après Ernst Haeckel, 1891.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Phylogenetic Reconstruction: Parsimony Anders Gorm Pedersen
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Distance Matrix Methods: Models of Evolution Anders Gorm Pedersen Molecular Evolution Group Center for Biological.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Phylogenetic Reconstruction: Distance Matrix Methods Anders Gorm Pedersen Molecular Evolution Group Center for.
Building Phylogenies Distance-Based Methods. Methods Distance-based Parsimony Maximum likelihood.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Distance Matrix Methods Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis.
Phylogenetic trees Tutorial 6. Distance based methods UPGMA Neighbor Joining Tools Mega phylogeny.fr DrewTree Phylogenetic Trees.
Phylogenetic trees Sushmita Roy BMI/CS 576
Multiple Sequence Alignments and Phylogeny.  Within a protein sequence, some regions will be more conserved than others. As more conserved,
Phylogenetic analyses Kirsi Kostamo. The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among.
CatDogRat Dog3 Rat45 Cow676 Barbara Holland Phylogenetics Workhop, August 2006 Cat Dog Rat Cow Distance Based Methods for estimating phylogenetic.
Phylogenetic Analysis. 2 Introduction Intension –Using powerful algorithms to reconstruct the evolutionary history of all know organisms. Phylogenetic.
Terminology of phylogenetic trees
Molecular evidence for endosymbiosis Perform blastp to investigate sequence similarity among domains of life Found yeast nuclear genes exhibit more sequence.
Phylogenetic Analysis Unit 16 BIOL221T: Advanced Bioinformatics for Biotechnology Irene Gabashvili, PhD.
Phylogenetics Alexei Drummond. CS Friday quiz: How many rooted binary trees having 20 labeled terminal nodes are there? (A) (B)
Tree Inference Methods
1 Dan Graur Molecular Phylogenetics Molecular phylogenetic approaches: 1. distance-matrix (based on distance measures) 2. character-state.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
Phylogenetic Analysis. General comments on phylogenetics Phylogenetics is the branch of biology that deals with evolutionary relatedness Uses some measure.
Molecular phylogenetics 1 Level 3 Molecular Evolution and Bioinformatics Jim Provan Page and Holmes: Sections
Computational Biology, Part D Phylogenetic Trees Ramamoorthi Ravi/Robert F. Murphy Copyright  2000, All rights reserved.
Lecture 25 - Phylogeny Based on Chapter 23 - Molecular Evolution Copyright © 2010 Pearson Education Inc.
BINF6201/8201 Molecular phylogenetic methods
Bioinformatics 2011 Molecular Evolution Revised 29/12/06.
OUTLINE Phylogeny UPGMA Neighbor Joining Method Phylogeny Understanding life through time, over long periods of past time, the connections between all.
Phylogenetic Prediction Lecture II by Clarke S. Arnold March 19, 2002.
Introduction to Phylogenetics
Calculating branch lengths from distances. ABC A B C----- a b c.
Using traveling salesman problem algorithms for evolutionary tree construction Chantal Korostensky and Gaston H. Gonnet Presentation by: Ben Snider.
394C, Spring 2013 Sept 4, 2013 Tandy Warnow. DNA Sequence Evolution AAGACTT TGGACTTAAGGCCT -3 mil yrs -2 mil yrs -1 mil yrs today AGGGCATTAGCCCTAGCACTT.
Ch.6 Phylogenetic Trees 2 Contents Phylogenetic Trees Character State Matrix Perfect Phylogeny Binary Character States Two Characters Distance Matrix.
Evolutionary tree reconstruction
Chapter 10 Phylogenetic Basics. Similarities and divergence between biological sequences are often represented by phylogenetic trees Phylogenetics is.
Phylogeny Ch. 7 & 8.
Phylogenetic trees Sushmita Roy BMI/CS 576 Sep 23 rd, 2014.
Tutorial 5 Phylogenetic Trees.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
Distance-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 Colin Dewey Fall 2010.
Distance-based methods for phylogenetic tree reconstruction Colin Dewey BMI/CS 576 Fall 2015.
CSCE555 Bioinformatics Lecture 13 Phylogenetics II Meeting: MW 4:00PM-5:15PM SWGN2A21 Instructor: Dr. Jianjun Hu Course page:
Lecture 14 CS5661 Neighbor Joining Generates unrooted tree, allowing for unequal branches Given: Distance matrix for sequences Steps: Repeat 1-3 till all.
Phylogenetic basis of systematics
Inferring a phylogeny is an estimation procedure.
Multiple Alignment and Phylogenetic Trees
Goals of Phylogenetic Analysis
Inferring phylogenetic trees: Distance and maximum likelihood methods
Phylogeny.
Presentation transcript:

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Phylogenetic Reconstruction: Distance Matrix Methods Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: terminology

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: terminology

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: representations Three different representations of the same tree

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: rooted vs. unrooted A rooted tree has a single node (the root) that represents a point in time that is earlier than any other node in the tree. A rooted tree has directionality (nodes can be ordered in terms of “earlier” or “later”). In the rooted tree, distance between two nodes is represented along the time-axis only (the second axis just helps spread out the leafs) EarlyLate

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: rooted vs. unrooted A rooted tree has a single node (the root) that represents a point in time that is earlier than any other node in the tree. A rooted tree has directionality (nodes can be ordered in terms of “earlier” or “later”). In the rooted tree, distance between two nodes is represented along the time-axis only (the second axis just helps spread out the leafs) EarlyLate

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: rooted vs. unrooted A rooted tree has a single node (the root) that represents a point in time that is earlier than any other node in the tree. A rooted tree has directionality (nodes can be ordered in terms of “earlier” or “later”). In the rooted tree, distance between two nodes is represented along the time-axis only (the second axis just helps spread out the leafs) EarlyLate

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: rooted vs. unrooted In unrooted trees there is no directionality: we do not know if a node is earlier or later than another nodeIn unrooted trees there is no directionality: we do not know if a node is earlier or later than another node Distance along branches directly represents node distanceDistance along branches directly represents node distance

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Trees: rooted vs. unrooted In unrooted trees there is no directionality: we do not know if a node is earlier or later than another nodeIn unrooted trees there is no directionality: we do not know if a node is earlier or later than another node Distance along branches directly represents node distanceDistance along branches directly represents node distance

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Reconstructing a tree using non- contemporaneous data

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Reconstructing a tree using present-day data

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Data: molecular phylogeny DNA sequencesDNA sequences –genomic DNA –mitochondrial DNA –chloroplast DNA Protein sequencesProtein sequences Restriction site polymorphismsRestriction site polymorphisms DNA/DNA hybridizationDNA/DNA hybridization Immunological cross-reactionImmunological cross-reaction

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Morphology vs. molecular data African white-backed vulture (old world vulture) Andean condor (new world vulture) New and old world vultures seem to be closely related based on morphology. Molecular data indicates that old world vultures are related to birds of prey (falcons, hawks, etc.) while new world vultures are more closely related to storks Similar features presumably the result of convergent evolution

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Molecular data: single-celled organisms Molecular data useful for analyzing single-celled organisms (which have only few prominent morphological features).

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Distance Matrix Methods 1.Construct multiple alignment of sequences 2.Construct table listing all pairwise differences (distance matrix) 3.Construct tree from pairwise distances Gorilla : ACGTCGTA Human : ACGTTCCT Chimpanzee: ACGTTTCG GoHuCh Go-44 Hu-2 Ch- Go Hu Ch

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Finding Optimal Branch Lengths S1S1S1S1 S2S2S2S2 S3S3S3S3 S4S4S4S4 S1S1S1S1- D 12 D 13 D 14 S2S2S2S2- D 23 D 24 S3S3S3S3- D 34 S4S4S4S4- Observed distance S1 S3 S2 S4 a b c d e Distance along tree D 12  d 12 = a + b + c D 13  d 13 = a + d D 14  d 14 = a + b + e D 23  d 23 = d + b + c D 24  d 24 = c + e D 34  d 34 = d + b + e Goal:

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Optimal Branch Lengths: Least Squares Fit between given tree and observed distances can be expressed as “sum of squared differences”:Fit between given tree and observed distances can be expressed as “sum of squared differences”: Q =  (D ij - d ij ) 2 Q =  (D ij - d ij ) 2 Find branch lengths that minimize Q - this is the optimal set of branch lengths for this tree.Find branch lengths that minimize Q - this is the optimal set of branch lengths for this tree. S1 S3 S2 S4 a b c d e Distance along tree D 12  d 12 = a + b + c D 13  d 13 = a + d D 14  d 14 = a + b + e D 23  d 23 = d + b + c D 24  d 24 = c + e D 34  d 34 = d + b + e Goal: j>i

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Least Squares Optimality Criterion Search through all (or many) tree topologiesSearch through all (or many) tree topologies For each investigated tree, find best branch lengths using least squares criterionFor each investigated tree, find best branch lengths using least squares criterion Among all investigated trees, the best tree is the one with the smallest sum of squared errors.Among all investigated trees, the best tree is the one with the smallest sum of squared errors.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Exhaustive search impossible for large data sets No. taxa No. trees , , ,027, ,459, ,729, ,749,310, ,234,143, ,905,853,580,625

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Heuristic search 1. Construct initial tree; determine sum of squares 2. Construct set of “neighboring trees” by making small rearrangements of initial tree; determine sum of squares for each neighbor 3. If any of the neighboring trees are better than the initial tree, then select it/them and use as starting point for new round of rearrangements. (Possibly several neighbors are equally good) 4. Repeat steps 2+3 until you have found a tree that is better than all of its neighbors. 5. This tree is a “local optimum” (not necessarily a global optimum!)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Clustering Algorithms Starting point: Distance matrixStarting point: Distance matrix Cluster least different pair of sequences:Cluster least different pair of sequences: –Tree: pair connected to common ancestral node, compute branch lengths from ancestral node to both descendants –Distance matrix: combine two entries into one. Compute new distance matrix, by finding distance from new node to all other nodes Repeat until all nodes are linkedRepeat until all nodes are linked Results in only one tree, there is no measure of tree-goodness.Results in only one tree, there is no measure of tree-goodness.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Neighbor Joining Algorithm For each tip compute u i =  j D ij /(n-2)For each tip compute u i =  j D ij /(n-2) (this is essentially the average distance to all other tips, except the denominator is n-2 instead of n) Find the pair of tips, i and j, where D ij -u i -u j is smallestFind the pair of tips, i and j, where D ij -u i -u j is smallest Connect the tips i and j, forming a new ancestral node. The branch lengths from the ancestral node to i and j are:Connect the tips i and j, forming a new ancestral node. The branch lengths from the ancestral node to i and j are: v i = 0.5 D ij (u i -u j ) v j = 0.5 D ij (u j -u i ) Update the distance matrix: Compute distance between new node and each remaining tip as follows:Update the distance matrix: Compute distance between new node and each remaining tip as follows: D ij,k = (D ik +D jk -D ij )/2 Replace tips i and j by the new node which is now treated as a tipReplace tips i and j by the new node which is now treated as a tip Repeat until only two nodes remain.Repeat until only two nodes remain.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Superimposed Substitutions Actual number ofActual number of evolutionary events:5 Observed number ofObserved number of differences:2 Distance is (almost) always underestimatedDistance is (almost) always underestimated ACGGTGC C T GCGGTGA

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Model-based correction for superimposed substitutions Goal: try to infer the real number of evolutionary events (the real distance) based onGoal: try to infer the real number of evolutionary events (the real distance) based on 1. Observed data (sequence alignment) 2. A model of how evolution occurs

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Jukes and Cantor Model Four nucleotides assumed to be equally frequent (f=0.25)Four nucleotides assumed to be equally frequent (f=0.25) All 12 substitution rates assumed to be equalAll 12 substitution rates assumed to be equal Under this model the corrected distance is:Under this model the corrected distance is: D JC = x ln( x D OBS ) For instance:For instance: D OBS =0.43 => D JC =0.64 ACGT A -3     C    G    T   

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Other models of evolution