R. Bar-Yehuda © www.cs.technion.ac.il/~cs234141 1 Graph theory – תורת הגרפים 4.4 CATALAN NUMBERS מבוסס על הספר : S. Even, "Graph Algorithms", Computer.

Slides:



Advertisements
Similar presentations
Lecture Computer Science I - Martin Hardwick Recursion rA recursive function must have at least two parts l A part that solves a simple case of the.
Advertisements

Every edge is in a red ellipse (the bags). The bags are connected in a tree. The bags an original vertex is part of are connected.
מדעי המחשב ללא מחשב מפותחת ע " י שמעון שוקן ( המרכז הבינתחומי, הרצליה ) ובני שור ( אוניברסיטת תל - אביב ). Based on “Computer Science Unplugged” by Mike.
R. Bar-Yehuda © 1 קומבינטוריקה למדעי - המחשב – הרצאה # DE BRUIJN SEQUENCES מבוסס על הספר : S. Even, "Graph Algorithms",
R. Bar-Yehuda © 1 קומבינטוריקה למדעי - המחשב – הרצאה #17 Chapter 2: TREES מבוסס על הספר : S. Even, "Graph Algorithms",
© 2010 Pearson Education, Inc. All rights reserved.
R. Bar-Yehuda © 1 Graph theory – תורת הגרפים 2.4 Directed Trees – עצים מכוונים מבוסס על הספר : S. Even, "Graph Algorithms",
R. Bar-Yehuda © 1 Graph theory – תורת הגרפים 2.6 THE NUMBER OF SPANNING TREE מבוסס על הספר : S. Even, "Graph Algorithms",
R. Bar-Yehuda © 1 קומבינטוריקה למדעי - המחשב – הרצאה #14 Graph theory – תורת הגרפים Chapter 1: PATHS IN GRAPHS – 1. מסלולים.
25.All-Pairs Shortest Paths Hsu, Lih-Hsing. Computer Theory Lab. Chapter 25P.2.
General Computer Science for Engineers CISC 106 James Atlas Computer and Information Sciences 10/23/2009.
R. Bar-Yehuda © 1 Graph theory – תורת הגרפים 2.3 CAYLEY’S THEOREM – משפט קיילי מבוסס על הספר : S. Even, "Graph Algorithms",
Rewriting the book on Earthquake Locations Ethan Coon (APAM) Felix Waldhauser (LDEO)
SSDL פרויקט שנתי בהנדסת תוכנה שחר דג אודות שירותים מחשבים (מי הכי מהיר) הדפסה תוכנה עזרה שאלות נפוצות באתר המעבדה
R. Bar-Yehuda © 1 קומבינטוריקה למדעי - המחשב – הרצאה #16 EULER GRAPHS גרפים אויילרים מבוסס על הספר : S. Even, "Graph Algorithms",
Visualization of Clusters with a Density-Based Similarity Measure Rebecca Nugent Department of Statistics, Carnegie Mellon University June 9, 2007 Joint.
R. Bar-Yehuda © 1 Graph theory – תורת הגרפים 4. ORDERED TREES 4.1 UNIQUELY DECIPHERABLE CODES מבוסס על הספר : S. Even,
COURSE OVERVIEW ADVANCED TEXT ANALYTICS Thomas Tiahrt, MA, PhD CSC492 – Advanced Text Analytics.
Data Structures Lecture-1:Introduction
1 CPSC 320: Intermediate Algorithm Design and Analysis July 25, 2014.
IRDM WS Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990 Reference.
CSS106 Introduction to Elementary Algorithms M.Sc Askar Satabaldiyev.
Relationships Between Structures “→” ≝ “Can be defined in terms of” Programs Groups Proofs Trees Complex numbers Operators Propositions Graphs Real.
computer
Some of the best books of  &mid= A23D2FC75CD A23D2FC75CD7.
S. BARRY COOPER is Professor of Mathematical Logic at the University of Leeds. He is a leading proponent of the return to the basics of computability,
Departments in Business Business Name 1 Business Name 2.
Department of Computer Science 1 Recursion & Backtracking 1.The game of NIM 2.Getting out of a maze 3.The 8 Queen’s Problem 4.Sudoku.
Hanoi Towers Big Oh Recursion Data Structures and Algorithms CS 244 Brent M. Dingle, Ph.D. Department of Mathematics, Statistics, and Computer Science.
1 CPSC 320: Intermediate Algorithm Design and Analysis July 16, 2014.
Lists Theory of Information. Lists  Imagine that you want to send a parcel to a friend that is secure and confidential…  How would you do it?
David Stotts Computer Science Department UNC Chapel Hill.
Cluster Analysis Data Mining Experiment Department of Computer Science Shenzhen Graduate School Harbin Institute of Technology.
We want to add here all the Eleven schools that are functional. Next slide shows how it would look when we click on School of Studies.
Take the Test Data Structures and Algorithms CS 244 Brent M. Dingle, Ph.D. Department of Mathematics, Statistics, and Computer Science University of Wisconsin.
Презентацию подготовила Хайруллина Ч.А. Муслюмовская гимназия Подготовка к части С ЕГЭ.
Electrical Engineering
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
Introduction to Recursion - What is it? - When is it used? - Examples
Notes Over 2.1 Graph the numbers on a number line. Then write two inequalities that compare the two numbers and and 9 l l l.
The road ahead This class is only the beginning.
continued on next slide
How to Resolve HP 0x83c0000a Printer Error Code
Introduction to Computer Science - Alice
Presentation Test. Second Slide Third Slide It worked.
Here is the graph of a function
                                                                                                                                                                                                                                                
continued on next slide
continued on next slide
הוראת מיומנויות של עבודה בקבוצה מחקר פעולה
By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman
Searching and BST Exercises
Discrete Math (2) Haiming Chen Associate Professor, PhD
A graphing calculator is required for some problems or parts of problems 2000.
Graph 2x + 4y = 16 by finding the x and y intercepts.
Find the AR Level of Your Library Book!
See requirements for practice program on next slide.
 = N  N matrix multiplication N = 3 matrix N = 3 matrix N = 3 matrix
Lecture 2 Introduction/Overview Fri. 9/8/00
Trees.
АВЛИГАТАЙ ТЭМЦЭХ ҮНДЭСНИЙ ХӨТӨЛБӨР /танилцуулга/
Find the AR Level of Your Library Book!
Midterm Exam Review.
Line Graphs.
continued on next slide
Recursion 1. The computer science equivalent of mathematical induction. 2. A way of defining something in terms of itself. 3. Ex. f(n) = 1,
continued on next slide
Presentation transcript:

R. Bar-Yehuda © 1 Graph theory – תורת הגרפים 4.4 CATALAN NUMBERS מבוסס על הספר : S. Even, "Graph Algorithms", Computer Science Press, 1979 שקפים, ספר וחומר רלוונטי נוסף באתר הקורס : Slides, book and other related material at:

R. Bar-Yehuda © CATALAN NUMBERS 4.4 CATALAN NUMBERS

R. Bar-Yehuda © 3 מסלול מ- (0,0) (n,n) ל-

R. Bar-Yehuda © 4 מסלול מ- (0,0) (n,n) ל- שעובר מתחת לאלכסון

R. Bar-Yehuda © 5 שיקוף של המסלול מ- (0,0) עד לנקודה הראשונה מתחת לאלכסון y = x-1 סביב הישר:

R. Bar-Yehuda © 6

7 מסלול מ- (1-, 1) (n,n) ל-

R. Bar-Yehuda © 8 העתקה חח"ע: יערות מסודרים וסדרות סוגריים העתקה חח"ע: יערות מסודרים וסדרות סוגריים

R. Bar-Yehuda © 9 העתקה חח"ע: יערות מסודרים ועצים בינאריים העתקה חח"ע: יערות מסודרים ועצים בינאריים

R. Bar-Yehuda © 10 העתקה חח"ע: פרמוטציות מחסנית וסדרות סוגריים העתקה חח"ע: פרמוטציות מחסנית וסדרות סוגריים

R. Bar-Yehuda © 11 CATALAN NUMBERS - Recursion C 0 = 1 C n = C 0 C n-1 + C 1 C n-1 +…+ C n-1 C 0