H.-G. Moser, Max-Planck-Institut für Physik, Munich1 Beauty03, October 2003 The Status of the ATLAS Inner Detector Hans-Günther Moser for the ATLAS Collaboration.

Slides:



Advertisements
Similar presentations
H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
Advertisements

The ATLAS Pixel Detector
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
The Intermediate Silicon Layers detector OUTLINE ISL inside CDFII Why the ISL? Conceptual Design Ladders and Spaceframe Rasnik Online Alignment System.
18th March Richard Hawkings Humidity control in the ATLAS ID Richard Hawkings (CERN) JCOV meeting 18/3/04  Overview of humidity and associated gas.
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
Charged Particle Tracker for a RHIC/EIC joint detector Detector layouts based on EIC and NLC Physics drivers Silicon detector technologies Simulations.
LHC Experiments at Liverpool E2V Visit – Nov 2005 Introduction Si Technology Upgrade/Maintenance Summary.
For high fluence, good S/N ratio thanks to: Single strip leakage current I leak  95nA at T  -5C Interstrip capacitance  3pF SVX4 chip 10 modules fully.
The LHCb Inner Tracker Marc-Olivier Bettler SPS annual meeting Zürich 21 February 2007.
Atlas SemiConductor Tracker Andrée Robichaud-Véronneau.
1.ATLAS and ID 2.SCT 3.Commissioning 4.Integration 5.Latest Runs 6.Conclusions Commissioning the ATLAS Silicon Microstrip Tracker IPRD08 - Siena Jose E.
ATLAS SCT module performance: beam test results José E. García.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
Shulamit Moed Vertex 2004, Como, September 20041page EndCap Module Production of the ATLAS semiconductor tracker (SCT) ATLAS SCT layout and specifications.
Sensors for CDF RunIIb silicon upgrade LayerR min (cm)1 MeV eq-n cm * * * * * *10.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
The BTeV Tracking Systems David Christian Fermilab f January 11, 2001.
Performance of ATLAS & CMS Silicon Tracker Alessia Tricomi University and INFN Catania International Europhysics Conference on High Energy Physics EPS.
D. Lissauer, BNL. 1 ATLAS ID Upgrade Scope R&D Plans for ATLAS Tracker First thoughts on Schedule and Cost.
Construction and quality control of the end-cap Transition Radiation Tracker for the ATLAS experiment Vasiliki A. Mitsou CERN HEP 2003, April, Athens,
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
HEP GROUP MEETING work on the ATLAS UPGRADE T.J.Fraser.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
1 CLAS12/Central Tracker review. Saclay 12/09 Stéphan AUNE Central Tracker review Micromegas central & forward tracker  R&D and prototypes  CAD implantation.
The ATLAS SemiConductor Tracker Abstract The ATLAS SemiConductor Tracker (SCT) is presented. About silicon micro-strip sensors with a total active.
Installation and operation of the LHCb Silicon Tracker detector Daniel Esperante (Universidade de Santiago de Compostela) on behalf of the Silicon Tracker.
U.S. Deliverables Cost and Schedule Summary M. G. D. Gilchriese U.S. ATLAS Review Revised Version November 29, 2000.
27 Octobre 2005IEEE2005 Nuclear Science Symposium, Puerto Rico, Niels Tuning 1/18 A High-Efficiency and High- Resolution Straw Tube Tracker for the LHCb.
ATLAS SCT End-Cap C Integration 1.Introduction: to the SCT within ATLAS 2.End-Cap C Reception at CERN 3.Final Assembly 4.Integration with the TRT 5.Combined.
U.S. Deliverables Cost and Schedule Summary M. G. D. Gilchriese Revised Version December 18, 2000.
The ATLAS Inner Detector Steve McMahon / RAL. Welcome to CERN Geneva Airport LHC accelerator CERN main site SPS accelerator CERN 2nd site It is your laboratory.
The ATLAS Silicon Microstrip Tracker
ATLAS PIXEL SYSTEM OVERVIEW M. Gilchriese Lawrence Berkeley National Laboratory March 11, 1999.
LHCb VErtex LOcator & Displaced Vertex Trigger
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Anatoli Romaniouk TRT Introduction TRT in ATLAS p. 2-4TRT in ATLAS p. 2-4 TRT design p. 5-7TRT design p. 5-7 TRT operation principles p. 8-9TRT operation.
The ATLAS Silicon Microstrip Tracker introduction system design sensors module design electronics hybrids construction integration Zdenek Dolezal, Charles.
M. Gilchriese U.S. Pixel Mechanics Overview M. G. D. Gilchriese Lawrence Berkeley National Laboratory April 2000.
Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96 TeV  Instantaneous luminosity will.
p-on-n Strip Detectors: ATLAS & CMS
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
Neil Jackson University of Liverpool Hiroshima Symposium June THE ATLAS SEMICONDUCTOR TRACKER (SCT) A PRESENTATION ON BEHALF OF THE ATLAS.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
1 The ATLAS SemiConductor Tracker commissioning at SR1 APS and JPS joint conference October 30, 2006 Ryuichi Takashima ( Kyoto Univ. of Education ) For.
LHCb Vertex Detector and Beetle Chip
TC Straw man for ATLAS ID for SLHC This layout is a result of the discussions in the GENOA ID upgrade workshop. Aim is to evolve this to include list of.
The LHCb Vertex Locator Lars Eklund LHCb VELO Group of the LHCb Collaboration CERN (Geneva), EPFL (Lausanne), NIKHEF (Amsterdam), University of Glasgow,
Ideas for Super LHC tracking upgrades 3/11/04 Marc Weber We have been thinking and meeting to discuss SLHC tracking R&D for a while… Agenda  Introduction:
Upgrade PO M. Tyndel, MIWG Review plans p1 Nov 1 st, CERN Module integration Review – Decision process  Information will be gathered for each concept.
Rene BellwiedSTAR Tracking Upgrade Meeting, Boston, 07/10/06 1 ALICE Silicon Pixel Detector (SPD) Rene Bellwied, Wayne State University Layout, Mechanics.
MPI/ATLAS H.-G. Moser MPI, Munich Detector Status Delivered: 86% IV measured: 58% + Visual insp.: 39% fail : ~5%
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
Steinar Stapnes, LHCC June The ATLAS inner detector TRT endcap A+B TRT endcap C TRT barrel SCT barrel SCT endcap Pixels uWhole ID sits inside bore.
Operation & Performance of the ATLAS SemiConductor Tracker Dr. Petra Haefner Max-Planck-Institut für Physik.
DPF2000 ATLAS Pixel Detector M. G. D. Gilchriese Lawrence Berkeley National Laboratory August 2000.
1/20 LHCb upgrade, Jeroen van Tilburg Nikhef Jamboree, 14 Dec 2015 Preparing for the LHCb upgrade.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
Atlas SemiConductor Tracker final integration and commissioning Andrée Robichaud-Véronneau Université de Genève on behalf of the Atlas SCT collaboration.
Straw man layout for ATLAS ID for SLHC
Tracking detectors/2 F.Riggi.
The ATLAS tracking and vertexing detector
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
ICHEP02 Chris Parkes ALICE m2 Pixels+Drift+Strips LHCb m2
Simulated vertex precision
Integration and alignment of ATLAS SCT
アトラスシリコン半導体飛跡検出器:ATLAS Silicon-strip Tracking Detector
Performance of ATLAS & CMS Silicon Tracker
Presentation transcript:

H.-G. Moser, Max-Planck-Institut für Physik, Munich1 Beauty03, October 2003 The Status of the ATLAS Inner Detector Hans-Günther Moser for the ATLAS Collaboration Outline Introduction Tracking in ATLAS ATLAS ID Pixel detector Silicon Tracker Transition Radiation Tracker System Aspects Schedule Conclusions

H.-G. Moser, Max-Planck-Institut für Physik, Munich2 Beauty03, October 2003 Requirements for Tracking in ATLAS Rapidity coverage: |  | < 2.5 Momentum resolution for isolated leptons:  p T / p T ~0.1 p T (TeV) Track reconstruction efficiency (high-p T ) > 95%, (isolated tracks) > 90%, (in jets) Ghost tracks < 1% (for isolated tracks) Impact parameter resolution:  r-  = ( / p T )  m,  z = ( / p T )  m, Low material budget Lifetime > 10 LHC years Occupancy: 700 tracks per high luminosity event inside acceptance Short bunch crossing time (25 ns) High radiation: up to neutrons/cm 2 /year (1 MeV equivalent)

H.-G. Moser, Max-Planck-Institut für Physik, Munich3 Beauty03, October 2003 ATLAS and ATLAS Inner Detector ID length: 7 m ID diameter: 2m

H.-G. Moser, Max-Planck-Institut für Physik, Munich4 Beauty03, October 2003 The ATLAS Inner Detector Sub- Detectorr(cm)element sizeresolutionhits/track channels Pixel  m x400  m12  m x 60  m 3 93x10 6 (Silicon)(3D) SCT  m x 12cm 16  m x 580  m4 6x10 6 (Silicon Strip)(stereo) TRT mm x 74cm170  m36 0.4x10 6 (Straw Tubes)(projective) Three subdetectors using different technologies to match the requirements of granularity and radiation tolerance

H.-G. Moser, Max-Planck-Institut für Physik, Munich5 Beauty03, October 2003 Pixel Detector Layout 3 barrel cylinders 2 x 3 endcap disks Insertable layout -> can be inserted after installation of SCT/TRD -> ‚easy‘ upgrade Only the support tube needs to be installed beforehand Decouples SCT/TRT and Pixel schedule Last subdetector to be installed!

H.-G. Moser, Max-Planck-Institut für Physik, Munich6 Beauty03, October 2003 Pixel Modules Each Module (16.4 x 60.8 mm 2 ) has one sensor with pixels 16 frontend chips are bump-bonded on the sensor for readout 3 barrel layers need 1744 modules 2x3 endcaps 288 modules Sensors are in production: CiS (Germany): 600 produced, 400 in production Tesla (Czech Republic): 50 produced, full series to start

H.-G. Moser, Max-Planck-Institut für Physik, Munich7 Beauty03, October 2003 Pixel Electronics FE readout chip in Deep Submicron (DSM) technology (DMILL failed) First prototype batches basically working, however, some fixes necessary Production yield >90% ! MCCI2 (module control) New version with triple logic for SEU (single event upset) tolerance Final production expected to be ready by now

H.-G. Moser, Max-Planck-Institut für Physik, Munich8 Beauty03, October 2003 Pixel Support Support tube in production (needs to be ready first!) Global support ready Local supports (staves and sectors) in production A bit late, but not critical High precision/low mass objects

H.-G. Moser, Max-Planck-Institut für Physik, Munich9 Beauty03, October 2003 Test Beam Results before after Efficiency: 99.3% before irrad. 97.7% (60 Mrad) Resolution: 13.2  m after irradiation Operation of 6 modules in parallel with one power supply/cable: No change of performance

H.-G. Moser, Max-Planck-Institut für Physik, Munich10 Beauty03, October 2003 SCT Layout Four barrel layers -barrel radii: 300, 371, 443 and 514 mm; -length 1600 mm -in total 2112 modules Forward Modules on 2x9 disks -disk distance from z = 0: mm, -radii: mm -total of 1976 modules (3 rings: 40,40, 52 modules each)

H.-G. Moser, Max-Planck-Institut für Physik, Munich11 Beauty03, October 2003 SCT Modules strip direction Basic Concept (Endcap) -4 Si-strip detectors in 2 planes (40 mrad stereo) -Mechanical carrier made from Thermal Pyrolytic Graphite (C k >1700 W/m/°K) and AlN -Flex Hybrid (Kapton) on carbon substrate with ASIC readout electronics -Glas pitch adaptors for mechanical/electrical connection detector-electronics (heat barrier)

H.-G. Moser, Max-Planck-Institut für Physik, Munich12 Beauty03, October 2003 SCT Silicon Detectors  Radiation tolerant up to 3x10 14 p/cm 2  p-on-n single sided detectors  285 micron 2-8 kOhm  4“ substrate  Barrel: 64x64 mm 2  Forward: wedge shaped (5 shapes)  768 readout strips with ca 80  m pitch  No intermediate strips  AC coupled strips  Polysilicon or implanted bias resistors  Multiguardring structure to ensure stability up to 500 V  Ca needed  Produced by Hamamatsu and CIS (competed, excellent quality)

H.-G. Moser, Max-Planck-Institut für Physik, Munich13 Beauty03, October 2003 Detectors: Radiation Hardness After irradiation: high depletion voltage Short period (10 days): annealing reduces V dep Afterwards V dep rises steadily with time (at high temperatures): Reverse annealing -> keep Si cool (-10 C) Problems in very exposed regions close to the beam or high   Reduced thickness: 285 -> 260  m ca. 50V  Oxigenated detectors: less damage and slower reverse annealing

H.-G. Moser, Max-Planck-Institut für Physik, Munich14 Beauty03, October 2003 SCT Electronics ABCD 128 channels bipolar frontend DMILL rad hard process Shaping time: 20ns Binary Readout (single threshold) 132 cell pipeline Production finished Low yield, need to use chips with one dead channel to complete detector (ca. 15%)

H.-G. Moser, Max-Planck-Institut für Physik, Munich15 Beauty03, October 2003 Module Production Production running at 4 locations Ca. 500 modules produced & tested Production at 7 locations Commissioning of production sites Start in October Barrel Modules Endcap Modules

H.-G. Moser, Max-Planck-Institut für Physik, Munich16 Beauty03, October 2003 Engineering Carbon cylinders for barrel support are ready Need to be equipped with services 4 of the 18 carbon disks for the endcap module support are produced Need to be equipped with services Again, high precision/low mass objects Disk flat to  m over 2 m!

H.-G. Moser, Max-Planck-Institut für Physik, Munich17 Beauty03, October 2003 Testbeam Results

H.-G. Moser, Max-Planck-Institut für Physik, Munich18 Beauty03, October 2003 Testbeam Results Nominal specifications (after irradiation): >99% efficiency < 5x10 -4 occupancy (readout bandwidth 1 fC threshold Ok for barrel modules Endcap modules have slightly higher noise. Still possible to meet the specs tuning the threshold

H.-G. Moser, Max-Planck-Institut für Physik, Munich19 Beauty03, October 2003 TRT Layout Radiator Straws Radiator Straws Barrel: axial straws, foil radiator Endcap: radial straws, foam radiator Tracking: up to 36 points with  =170  m improves pattern recognition, equivalent to a single point with 50  m precision Transition radiation: e/  ~ 100

H.-G. Moser, Max-Planck-Institut für Physik, Munich20 Beauty03, October 2003 TRT Modules Barrel Module Production completed, being tested Endcap Module production was delayed due to problems with the front-end boards (‚WEBs‘), should be completed in May 2005 (still on critical path)

H.-G. Moser, Max-Planck-Institut für Physik, Munich21 Beauty03, October 2003 TRT Gas Mixture Original gas mixture: Xe(70%) CF 4 (20%) CO 2 (10%) However, CF 4 radicals destroyed glass wire joints (discovered in 2001, after >20% produced) 1.Use polyimide/epoxy joint.... Too late 2.Change gas mixture: Xe(70%) CO 2 (27%) O 2 (3%) acceptable operation stability equivalent physics performance (but slower) Requires periodical wire cleaning with Ar/CO 2 /CF 4 to remove Si deposit, if found (demonstrated) Drift-time accuracy Efficiency Old New Old New

H.-G. Moser, Max-Planck-Institut für Physik, Munich22 Beauty03, October 2003 Inner Detector: System Aspects  Cooling  Gas system  Services  Structure/Supports  Integration  Installation e.g. patch panel to connect electrical & optical and cooling services

H.-G. Moser, Max-Planck-Institut für Physik, Munich23 Beauty03, October 2003 Cooling INSIDE ID VOLUME OUTSIDE ID VOLUME electronicscables Thermal enclosure cables PIXEL 12.5 kW 3 kW 1.3 kW 11 kW SCT 39 kW 3.6 kW 6 kW 20 kW TRT 46 kW 1 kW - 6 kW Total 96.5 kW 7.6 kW 7.3 kW 37 kW Warm monophase Evaporative system Using C 3 F 8 (–30°)

H.-G. Moser, Max-Planck-Institut für Physik, Munich24 Beauty03, October 2003 Assembly and integration Test area Assembly area Control room A dedicated facility for ID assembly and integration is set up close to the ATLAS pit.  Assembly of SCT barrel, tests of SCT endcaps, TRT assembly  SCT/TRT integration and testing  Pixel Detector assembly

H.-G. Moser, Max-Planck-Institut für Physik, Munich25 Beauty03, October 2003 Expected Performance X0X0 Material in ID changed compared to initial (‚TDR‘) layout (increased, of course) -increased pixel sensor thickness -More realistic engineering and services Radius of inner pixel layer 4.3cm -> 5cm Some impact on momentum and impact parameter resolution Barrel Region

H.-G. Moser, Max-Planck-Institut für Physik, Munich26 Beauty03, October 2003 Staged Items However, because of funding and schedule problems the initial detector will not have:  Middle pixel layer, at R=9 cm,  Middle pixel disks, at z = +/- 58 cm  TRT ‚C‘ wheels, at I  I > 1.7 x x x

H.-G. Moser, Max-Planck-Institut für Physik, Munich27 Beauty03, October 2003 Consequences Impact on: Missing pixel layers -> worse impact parameter resolution -> reduced b-tagging performance Missing TRT C-wheels -> worse momentum resolution at I  I > 1.7

H.-G. Moser, Max-Planck-Institut für Physik, Munich28 Beauty03, October 2003 Schedule Start assembly in SR building: April 04 SCT barrel ready:January 05 SCT endcap C readyApril 05 SCT endcap A readyAugust 05 TRT barrel readyJanuary 05 TRT endcap C readyOctober 04 TRT endcap A readySeptember 05 ID barrel ready for installation in ATLASJuly 05 ID endcap C ready for installationNovember 05 ID endcap A ready for installationMarch 06 Staged items: 3rd pixel layerAugust 06 TRT C wheelsJuly 06

H.-G. Moser, Max-Planck-Institut für Physik, Munich29 Beauty03, October 2003 Conclusions Most of the technical problems are resolved Production of detector modules and structures has started Preparations for detector integration started Main worry is the tight schedule and fighting delays We are confident to be ready for physics in 2007