Arnaud Lucotte ISN-Grenoble J/ e + e - selection at D RunII Arnaud Lucotte (ISN Grenoble) Introduction A. J/ production at the TeVatron 1. Prompt production:

Slides:



Advertisements
Similar presentations
Discovery of a standard model Higgs boson using vector boson fusion at the LHC Craig Buttar University of Sheffield Collaborators: G.Azuelos, V.Cavasinni,
Advertisements

ATLAS, CMS B-Physics Reach UK HEP FORUM The Cosener's House, Abingdon, 24th-25th April 2004 'From the Tevatron to the LHC' M.Smizanska, Lancaster University,
TISB TISB: Gruppo del Tau1 TISB 18.Maggio.2001 Sesto Fiorentino Gruppo di lavoro sul : Status report Giuseppe Bagliesi Simone Gennai Giacomo.
High Level Trigger (HLT) for ALICE Bergen Frankfurt Heidelberg Oslo.
Jin Huang Los Alamos National Lab.  Cited from March collaboration Meeting EC group Internal Communication Jin Huang 2 Preshower ID power drop significantly.
PFA-Enhanced Dual Readout Crystal Calorimetry Stephen Magill - ANL Hans Wenzel - FNAL Outline : Motivation Detector Parameters Use of a PFA in Dual Readout.
M.Mevius Open and hidden beauty production in 920 GeV proton –nucleus collisions at HERA-B M.Mevius DESY.
The Silicon Track Trigger (STT) at DØ Beauty 2005 in Assisi, June 2005 Sascha Caron for the DØ collaboration Tag beauty fast …
27 th June 2008Johannes Albrecht, BEACH 2008 Johannes Albrecht Physikalisches Institut Universität Heidelberg on behalf of the LHCb Collaboration The LHCb.
FPCP 2002, 05/16-18/2002 p. 1 Richard E. Hughes, The Ohio State UniversityCDF Run II Status Status of CDF and Prospects Flavor Physics and CP Violation.
Fourth Nordic LHC Physics Workshop Stockholm 23 September 2001 P Eerola 1 Investigation of the decays B 0 d,s -> J/  in the ATLAS experiment at the LHC.
On the Trail of the Higgs Boson Meenakshi Narain.
Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004.
Michele Gallinaro, "QCD Results at CDF" - XXXVIII Rencontres de Moriond, March 22-29, QCD Results at CDF Inclusive Jet Cross Section Dijet Mass.
1 The CMS Heavy Ion Program Michael Murray Kansas.
Silicon Tracking for Forward Electron Identification at CDF David Stuart, UC Santa Barbara Oct 30, 2002 David Stuart, UC Santa Barbara Oct 30, 2002.
In order to acquire the full physics potential of the LHC, the ATLAS electromagnetic calorimeter must be able to efficiently identify photons and electrons.
Diffractive W and Z Production at Tevatron Konstantin Goulianos The Rockefeller University and the CDF collaboration Moriond QCD and High Energy Interactions.
Workshop on Quarkonium, November 8-10, 2002 at CERN Heriberto Castilla DØ at Run IIa as the new B-Physics/charmonium player Heriberto Castilla Cinvestav-IPN.
EPS 2003, July 19, 2003David Buchholz, Northwestern University Performance of the D0 Experiment in Run II Detector Commissioning and Performance Accelerator,
 Improve lepton-photon-hadron separation in the FMS to do  Some examples  J/Ψ physics in pAu and pp at forward rapidities  current status from chris.
BEACH Conference 2006 Leah Welty Indiana University BEACH /7/06.
Alexander Khanov 25 April 2003 DIS’03, St.Petersburg 1 Recent B Physics results from DØ The B Physics program in D Ø Run II Current analyses – First results.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
B c Results from CDF II Satyajit Behari (For the CDF Collab.) Johns Hopkins Univ., Baltimore,USA 23 rd Jul HEP2005 Europhysics Conference, Lisboa,
June 28, 2002BEACH2002 B Physics at the Tevatron B Physics at the Tevatron Jack Cranshaw Texas Tech University For the CDF and D0 Collaborations.
Jet Studies at CMS and ATLAS 1 Konstantinos Kousouris Fermilab Moriond QCD and High Energy Interactions Wednesday, 18 March 2009 (on behalf of the CMS.
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
Jet Calibration Experience in CDF Beate Heinemann University of Liverpool -CDF calorimeter -Relative Calibrations -Absolute Calibration -Multiple Interactions.
CDF Status and Prospects for Run 2 Tara Shears. Introduction Accelerator / detector overview: Tevatron overview CDF overview Luminosity Physics prospects.
IOP HEPP: Beauty Physics in the UK, 12/11/08Julie Kirk1 B-triggers at ATLAS Julie Kirk Rutherford Appleton Laboratory Introduction – B physics at LHC –
1 Triggering on Electromagnetic Objects (e  /  ) at L1 & L2 at L1 & L2 Mrinmoy Bhattacharjee Mrinmoy Bhattacharjee SUNY, Stony Brook SUNY, Stony Brook.
J/  production in p+p collisions at PHENIX and gluon distribution QWG meeting at FNAL September Hiroki Sato (Kyoto University) for the PHENIX collaboration.
1 Silke Duensing DØ Analysis Status NIKHEF Annual Scientific Meeting Analysing first D0 data  Real Data with:  Jets  Missing Et  Electrons 
Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003.
DPF2000, 8/9-12/00 p. 1Richard E. Hughes, The Ohio State UniversityHiggs Searches in Run II at CDF Prospects for Higgs Searches at CDF in Run II DPF2000.
Jet Physics at CDF Sally Seidel University of New Mexico APS’99 24 March 1999.
Emily Nurse W production and properties at CDF0. Emily Nurse W production and properties at CDF1 The electron and muon channels are used to measure W.
CALOR April Algorithms for the DØ Calorimeter Sophie Trincaz-Duvoid LPNHE – PARIS VI for the DØ collaboration  Calorimeter short description.
Paul Balm - EPS July 17, 2003 Towards CP violation results from DØ Paul Balm, NIKHEF (for the DØ collaboration) EPS meeting July 2003, Aachen This.
The DØ Silicon Track Trigger Wendy Taylor IEEE NSS 2000 Lyon, France October 17, 2000  Introduction  Overview of STT  STT Hardware Design u Motherboard.
7/20/07Jiyeon Han (University of Rochester)1 d  /dy Distribution of Drell-Yan Dielectron Pairs at CDF in Run II Jiyeon Han (University of Rochester) For.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
Jet Studies at CDF Anwar Ahmad Bhatti The Rockefeller University CDF Collaboration DIS03 St. Petersburg Russia April 24,2003 Inclusive Jet Cross Section.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Ted Eltzroth RunII Stop in ttbar & ICD. 06/24/02 Ted Eltzroth Stop direct production qq -> tt ->c Z 1 0.
Penny Kasper Fermilab Heavy Quarkonium Workshop 21 June Upsilon production DØ Penny Kasper Fermilab (DØ collaboration) 29 June 2006 Heavy Quarkonium.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
Moriond QCD March 24, 2003Eric Kajfasz, CPPM/D01 b-production cross-section at the TeVatron Eric Kajfasz, CPPM/D0 for the CDF and D0 collaborations.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Run 2 Jets at the Tevatron Iain Bertram Lancaster University/DØ Experiment PIC2003  Inclusive Cross Section  Dijet Mass  Structure.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
RHIC-PV, April 27, 2007 M. Rijssenbeek 1 The Measurement of W ’s at the CERN and FNAL hadron colliders W ’s at RHIC ! W ’s at CERN – UA2 W ’s at FNAL -
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
Electron Triggering and B-Physics at L3 (B  J/  K s, where J/   e  e  ) Abid Patwa, André Turcot, and Sailesh Chopra B-id Vertical Review DØ, Fermilab.
QWG Sept 20-22, Jundong Huang Indiana University 1 DØ Quarkonium Production at DØ Jundong Huang Indiana University Quarkonium Workshop FermiLab September.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Need for HI/LO PS Thresholds
Electron identification
Particle detection and reconstruction at the LHC (IV)
CMS SLHC Calorimeter Trigger Upgrade,
DØ Upgrade Run II Introduction Physics Goals Tevatron Upgrade
The Silicon Track Trigger (STT) at DØ
Quarkonium production in ALICE
CMS Physics Analysis in China
Parasitic Run Physics Simulations
Commissioning of the ALICE-PHOS trigger
CMS Physics Analysis in China
Susan Burke, University of Arizona
Presentation transcript:

Arnaud Lucotte ISN-Grenoble J/ e + e - selection at D RunII Arnaud Lucotte (ISN Grenoble) Introduction A. J/ production at the TeVatron 1. Prompt production: direct and c 2. Production from b decays 3. Cross-sections at fnal B. J/ detection with the upgrade D 1. Upgrade detectors for J/Psi 2. Trigger Constraints at Run II 3. Trigger Architecture C. Triggering on J/ e + e - at D 1. L1 and L2 Triggers 2. Reconstruction 3. J/ e + e - yields Conclusion

Arnaud Lucotte ISN-Grenoble Introduction: J/Psi at Run II B Physics: bbar 50 b 32 cm 2 s -1 ) w/ bbar < 1/1000 dj Violation CP dans le systeme B d 0 : B S Oscillations B s 0 D S (D S ) 2000 evts attendus (~70 fs time resolution) Other b-topics: Rare b Decays Spectroscopy B C Detector Calibration: Calibration: CC, EC-EC, EC-CC using Z ee,, ee

Arnaud Lucotte ISN-Grenoble J/ Production at TeVatron 1. Prompt Production of J/ s (a) direct production Color Singlet Model (CSM) (see graphs) built to describe ISR data predicts direct processus is dominant factor discrepancy vs fnal data ! (b) production via c states c states produced by gluon fragmentation pp c +X c J/ Still not enough to explain fnal data ! (c) modified direct production Color Octet Model (COM) brings new predictions to direct production better agreement w/ fnal data ~24% of prompt J/ from c CDF

Arnaud Lucotte ISN-Grenoble J/ Production at TeVatron (a) Quarkonium Production (CSM) 1 S 0 3 P j 1 S 0 3 P 0,2 1 S 0 3 P j 1 S 0 3 S 1 3 P j 1 S 0 3 P j g g g g g g g g g g g g g g g q q q q g O( s 3 )

Arnaud Lucotte ISN-Grenoble J/ Production at TeVatron 2. b-decay production (a) b-decays contribution CDF+D0: depends on p T d p vs p T, 3. J/ Production Cross-section CDF central: p >5GeV, <0.6 D0 all detector: d p vs 1-30% J/ from b-decays D0 = nb D0 production ~centrale

Arnaud Lucotte ISN-Grenoble J/ Production at TeVatron 3. J/ signal at the TeVatron (a) Momentum: p T J/ p T B with p T B ~ M B, p T l ~ 2.5 GeV/c lepton even softer for prompt production (b) Anglular distribution: J/ more central (e+,e-) ã few degrees

Arnaud Lucotte ISN-Grenoble Solenoide, Detecteur de Traces Silicon Vertex, Preshowers Fibres Sci. Boucliers Chambres a derive (Mini-drift) Arrieres Scintillateurs Arrieres Scintillateur Central + Nouvelle Electronique, Trig, DAQ D Upgrade

Arnaud Lucotte ISN-Grenoble Constraints on a J/ e - e + Trigger Signal Characteristics: B J/ X : 0.7 w/ ~ M B C J/ X: 1.5 GeV/c Calorimeter threshold as low as: E T GeV Constraints on J/ triggering Against Dijet background: ~ cm 2 s -1 w/ band width: ~1 kHz at L1, ~100Hz at L2 - Needs: L1: Combination Track + Preshower + Calorimeter AND CAL/PS coincidence by Quadrant L2: Inv. Mass reconstruction etc...

Arnaud Lucotte ISN-Grenoble L2FW:Combine objects (e,, j) L1CAL L2STT Global L2 L2CFT L2PS L2Cal L1PS / L1FT L2 Muon L1 Muon Detector L1 TriggerL2 Trigger 7 MHz 8 kHz 1 kHz CAL FPS CPS CFT SMT Muon Trigger Architecture (100 s) (4.2 s) L1FW: CAL towers, tracks, Muons 128 available combinations (ORs) Calorimeter vs Preshower + tracks Calorimeter vs Tracks

Arnaud Lucotte ISN-Grenoble L1-Central EM Triggering Detector-specific: EM Calorimeter #tower ( = ) & E T > [2.5, 5, 7, 10] GeV Central PreShower #cluster = adjacent strips such: E strip > 2-5 MIPs Fiber Tracker # signed trajectories / bin p T [1.5-3], [3-5],[5-10], [10-] GeV/c counted in each 80 x 4.5 o sectors Global-Level (Framework): Coincidence by Quadrant: 1 tower EM + (1 CPS-cluster+Track p T /sector) L1PS L1CFT L1FW L1CAL

Arnaud Lucotte ISN-Grenoble L1-Forward EM Trigger EM Calorimeter EM EM Calorimeter EM tower ( = ) & E T >[2.5, 5, 7, 10] GeV Forward PreShower Forward PreShower PS cluster = adjacent strips w/ E strip > 5-10 MIPs electron = PS cluster (u or v) + MIP (u or v) Global Trigger (Framework) Global Trigger (Framework) Coincidence by Quadrant 1 tour EM + 1 electron (u et v) FPS Electron in FPS Pb L1CAL L1PS L1FW

Arnaud Lucotte ISN-Grenoble L2-Central EM Triggering EM Calorimeter EM Calorimeter - L1 calo tower as seed - Total EM cluster Energy: E T EM = E T SEED + E T 2nd_max - EM Fraction: EMF = E T EM /(E T EM +E T HAD ) - Cluster Isolation: T ISO = E T EM / (E T EM +E T HAD ) (3 3 including seed) Central Preshower: Central Preshower: - 3D cluster(u,v,x) e- tagged Fiber Tracker Fiber Tracker - convert L1 p T track p T (Look Up Table) - extrapolate to EM(3) Vertex Detector Vertex Detector - combine CFT tracks - re-fit tracks : p T,, impact parameter L2CAL L2PS L2CFT L2CTT

Arnaud Lucotte ISN-Grenoble Forward-EM Trigger Forward-EM Trigger Occupation dans le Preshower: Interactions/cros. = cm 2 s -1 MIP detection: T>0.3 MIP occ = 7-10% cluster detection: T > MIPs occ = % Dijet+6mbias

Arnaud Lucotte ISN-Grenoble Forward EM Triggering Efficiency: Background rates (QCD dijets): Pion Rejection 20-25% de conversions de 0 s avant PS (avant/arr.) PS+CAL: facteur 2-4 (eleve pour faibles p T ) Bkgd rejection: E T ~10 GeV: 700~Hz (CAL) vs 200 Hz (CAL+PS)

Arnaud Lucotte ISN-Grenoble L1 Trigger J/ e - e + Efficiency: - central 25-30% - forward 5-10% - depends on CAL thresh. E T CAL GeV Dijet background: - Rate: Hz - controled with PS/CAL Quadrant Match PS/Track sector Match(4.5 o ) Threshold E FPS, & E T CAL

Arnaud Lucotte ISN-Grenoble L2 Trigger J/ e - e + Efficiency: - Central 20-25% - Forward 4- 8% - depends on L1 CAL E T thresholds Dijet Background: - Rates: Hz: region centrale - avant/arriere - Reduced by Mass Window EM isolation Coincidence TT vs PS - reducible: vertex information (for b-decays) 2 tracks / large impact parameter S B = B/ B

Arnaud Lucotte ISN-Grenoble DAQ / Trigger for PS Signal Readout: How is it possible to read such signal ? Two thresholds - calibration: MIP detection (1 MIP 0.9 MeV) - cluster reconstruction (e, ) 5 to 60 MIPs Trigger and Readout: - L1: chips SIFT [0/1] (FPGA) - L2: chips SVX-II [analog] (pre-processors) SIFT SVX SIGNAL MIP SIGNAL GERBE Logique Trigger (FPGA s) SIGNAL TRIGGER VLPC Scintillateur Fibres WLS Q 0.27 Q 0.09 Q [5-160]fC [0-150]fC

Arnaud Lucotte ISN-Grenoble CP violation with B 0 d J/ K S Projection pour sin2 (temps integre) - efficacite reco des traces: 95% - D mix 0.47, D fond = S(S+B) ~ Tag D 2 tag ~ 0.05 sin N RECO Contraintes indirectes: Sin2 = CERN-EP/98-133

Arnaud Lucotte ISN-Grenoble Conclusion TeVatron is a phenomenal source of J/ s 1. main source is from prompt decays 2. most *relevant* source from b-decays 3. production models still to be tested D0 is adapted to select J/ ee 1. Detectors are adapted: - Preshowers (high dynamical range) - Calorimeter (4 thresh. sets) -Tracker (tag and sign at L1) 2. Triggering is feasible provided: - Preshower-Track info at L1 - Preshower-Calorimeter Match at L1 - L2 is *not* an issue for ee (it is for ) D0 will be able to make use of / ee 1. detector calibration (minimize M W ) 2. B physics like CP violation