Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.

Slides:



Advertisements
Similar presentations
Quantum Dots in Photonic Structures
Advertisements

Femtosecond lasers István Robel
Absorption and generation of light with silicon nanocrystals in SiO 2 Amsterdam Master of Physics Symposium 2008 Dolf Timmerman Van der Waals-Zeeman Institute.
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Production of Photon Triplets James Cockburn Introduction References MethodsResultsConclusion The method works by having down- conversion sources be pumped.
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Optical sources Lecture 5.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Quantum trajectories for the laboratory: modeling engineered quantum systems Andrew Doherty University of Sydney.
J.S. Colton, ODMR of self-assembled InAs QDs Optically-Detected Electron Spin Resonance of Self-Assembled InAs Quantum Dots Talk for APS March Meeting,
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
The Creation of Single Photon Sources By: Joseph Cosentino, Matthew Farkas, David Kim, Yuntao Ma, and Chris Miller. Quantum B Team Lab Instructor: Luke.
EE 230: Optical Fiber Communication Lecture 9 From the movie Warriors of the Net Light Sources.
Transient Four-Wave Mixing Spectroscopy on PbS Quantum Dots Kevin Blondino (Florida State University) Advisors: Dr. Denis Karaiskaj, USF (faculty) Jason.
TeraHertz Kerr effect in GaP crystal
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
True single photon sources V+ Particle like Wave-like during propagation Particle like Single atom or ion (in a trap) Single dye molecule.
Generation of short pulses
Space-Separated Quantum Cutting Anthony Yeh EE C235, Spring 2009.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Optical cavity with high quality factor Q Photonic crystals course final presentation Karin Söderström.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Lasers operating at nanoscale Impact of quantum effects on coherence and dynamics PhD R. Hostein (now Paris 6) R. Braive (now LPN) D. Elvira A. Lebreton.
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Quantum Dots in Photonic Structures Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską.
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
Generation of quantum states of light by a semiconductor quantum dot.
Charge Carrier Related Nonlinearities
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
Lecture 6. Polarization splitter based Filters Acoustooptic Tunable Filters.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Itoh Lab. M1 Masataka YASUDA
Quantum Optics with single Nano-Objects. Outline: Introduction : nonlinear optics with single molecule Single Photon sources Photon antibunching in single.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
NONRESONANT TUNNELING IN SHORT-PERIOD SUPERLATTICES WITH OPTICAL CAVITIES M.S. Kagan 1, I.V. Altukhov 1, S.K. Paprotskiy 1, A.N. Baranov 2, R. Teissier.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Quantum Imaging with Undetected Photons
Itoh Laboratory Masataka Yasuda
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Four wave mixing in submicron waveguides
Few photon optics: Ultimate Nonlinearities
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Optical qubits
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Entangling Atoms with Optical Frequency Combs
Exciton Polariton Waveguide in ZnO Nanorod
Presentation transcript:

Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P. Kramper & M. Gallard L. Le Gratiet, C. Mériadec, L. Ferlazzo I. Sagnes, A. Lemaître, I. Robert-Philip, I. Abram

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Motivation Production of indistinguishable single photons  Toolbox for quantum optics experiments  Linear optics quantum computation Photon-based two-qubit gates

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Single quantum dots InAs GaAs 3 nm

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Spectroscopy of single quantum dots Sharp spectral lines at low temperature (< 30  eV) Dephasing mechanisms (phonon, electrostatic) “Artificial”atoms InAs Pumping on an excited state of the exciton : one e-h pair Spectral filtering of the X line Emission of single photons GaAs InAs E GaAs Wetting layer Dot Intensity (arb. units) Wavelength (nm) 0 Laser at 888nm T ~4K

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Generation of single photons 1 photon Start Detector Stop Detector 50/50 Beamsplitter T ~ 12.2 ns 2T 3T TT Start Stop 0 T 2T 3T 4T Nb of coincidences Delay t ,0 0,2 0,4 0,6 0,8 1,0 g (2) (t) Delay t (ns)

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Characteristics  Same polarization mode  Same spatial mode  Same spectral-temporal mode Purest state of light Pump pulse time Negligible jitter (  relax ~10 ps) compared with pulse duration No phase diffusion (T 2 ) during the pulse duration

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Key parameters : Indistinguishable Photons For indistinguishable photons : T2 = 2 T1 t T 1 ~ 1.2 ns Lifetime : T 1 Coherence time :T 2 Dephasing (phonons, electrostatic...) Pure dephasing time T 2 * T 2 = 1/T 2 * + 1/2T 1 1 ~ 300 ps

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons - T 1 shortening Cavity effects (Purcell) Cavity Quantum Electrodynamics (CQED) We use an isolated emitter X transition of a single QD We modify the EM environment EM modes of a microcavity Control of the interaction

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons - T 1 shortening Cavity effects (Purcell) F = = +  3 Q 0 3    0 4  2 V n 3  0 Enhanced spontaneous emission into the cavity mode Leakage spontaneous emission into free space Q F Diameter (  m)

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons │1 1 > │1 2 > t 2 │1 3 > │1 4 > - r 2 │1 3 > │1 4 > + rt │2 3 > │0 4 > - rt │0 3 > │2 4 > │1 1 > │0 2 >r │1 3 > │0 4 > + t │0 3 > │1 4 > │0 1 > │1 2 >t │1 3 > │0 4 > - r │0 3 > │1 4 > A single photon on a beamsplitter A single photon on each input arm of a beamsplitter Both photons go the same way : «coalescence» into a two-photon state

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Experimental set-up Time-interval counter Spectro- -meter Sample Stop Start 2 ns Spectro- -meter 2 ns

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Experimental set-up Photon 2 Photon 1 4 ns Photon 1 Photon 2 2 ns Photon 2 Photon 1 Peak at  t=0 (Long-Short) Peak at  t=4 ns (Short-Long) Peak at  t=2 ns (Long-Long or Short-Short)  t (ns) Number of events

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Experimental set-up For indistinguishable photons  t (ns) Number of events Photon 1 Photon 2 Peak at  t=0 (Long-Short)

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Number of events Strongly reduced probability (ideally 0) of simultaneous detection of two photons (i.e. one on each output arm) The photons coalesce two-photon state Photon separation  t (ns)

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Direct measurement of T1 and T ,0 0,2 0,4 0,6 0,8 Visibility Time (ps) 1,0 T2 ~ 100ps Intensity (arb. units) Time (ps) T1 ~ 90ps

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Mandel dip T1 ~ 90ps T2 ~ 100ps and T2* ~ 225ps F ~15 & Coalescence efficiency ~ 55%  Photon 2 Photon 1 J. Bylander, I. Robert-Philip, and I. Abram, Eur. Phys. J. D 22, (2003) ,0 0,2 0,4 0,6 0,8 1,0 g (2) () Time delay  (ps) Theoretical prediction for: T1 = 90ps and T2 = 100ps Experimental Data

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Indistinguishable Photons Mandel dip T1 ~ psT 2 * ~ ps F ~15-25 Best coalescence efficiency ~ 76% ,0 0,2 0,4 0,6 0,8 1,0 Delay  (ps) g (2) (  )

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Resonant condition of Purcell effect Lifetime (ps) Purcell Factor Detuning (Angstroms)

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Temperature dependence Detuning ( Å) g (2) (0) Characteristic T 2 * T 1 g (2) (0) Characteristic times (ps) Temperature (K) T 2 * T 1

LABORATOIRE DE PHOTONIQUE ET DE NANOSTRUCTURES Conclusions Generation of indistinguishable single photons  Toolbox for quantum optics experiments  Engineering of nanosources for photon-based quantum information processing Future prospect :  Generation of entangled photons to implement more sophisticated functionalities of quantum information processing (teleportation, quantum logic...)