Quantum shot noise: from Schottky to Bell

Slides:



Advertisements
Similar presentations
Interferometric Measurement of Spatial Wigner Functions of Light Bryan Killett Brian J. Smith M. G. Raymer Funded by the NSF through the REU and ITR programs.
Advertisements

Quantum optical effects with pulsed lasers
Superconducting qubits
Kondo Physics from a Quantum Information Perspective
1 High order moments of shot noise in mesoscopic systems Michael Reznikov, Technion Experiment: G. Gershon, Y. Bomze, D. Shovkun Theory: E. Sukhorukov.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
1 quantum teleportation David Riethmiller 28 May 2007.
Statistical Physics 2.
Observing the quantum nonlocality in the state of a massive particle Koji Maruyama RIKEN (Institute of Physical and Chemical Research) with Sahel Ashhab.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Generation of short pulses
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
Scattering theory of conductance and noise Markus Büttiker University of Geneva Multi-probe conductors.
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers V. S.-W. Chung(鐘淑維)1,2, P. Samuelsson3 ,and.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Spin Quantum Number and Spin Example: Electron, s = ½ (fermion) Implications? Spin angular momentum is INTRINSIC to a particle mass charge spin More 
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Markus Büttiker University of Geneva Technion, Haifa, Israel, Jan. 11, 2007 Quantum shot noise: from Schottky to Bell.
Gabriel Cwilich Yeshiva University NeMeSyS Symposium 10/26/2008 Luis S. Froufe Perez Ecole Centrale, Paris Juan Jose Saenz Univ. Autonoma, Madrid Antonio.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Quantum Physics Study Questions PHYS 252 Dr. Varriano.
Quantum Foundations in Mesoscopic Physics Kicheon Kang ( 강기천 ) Department of Physics Chonnam National University –
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
Quantum information: From foundations to experiments Second Lecture Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro BRAZIL.
Atom-atom correlations A Thomas-Fermi density profile of size R TF,i (i=x,y,z) for the source MBEC, has a momentum distribution of width ~1/ R TF,i. The.
Particle-particle correlations produced by dynamical scatterer M. Moskalets Dpt. of Metal and Semiconductor Physics, NTU "Kharkiv Polytechnical Institute",
Quantum Dense coding and Quantum Teleportation
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Weak measurement of cotunneling time
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
By Supervisor Urbashi Satpathi Dr. Prosenjit Singha De0.
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
Quantum teleportation between light and matter
Dynamics of a BEC colliding with a time-dependent dipole barrier OSA Frontiers in Photonics 2006 starring Chris Ellenor as Mirco Siercke Aephraim Steinberg’s.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Sub-Planck Structure and Weak Measurement
Wave Particle Duality Light behaves as both a wave and a particle at the same time! PARTICLE properties individual interaction dynamics: F=ma mass – quantization.
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
Elements of Quantum Mechanics
OSU Quantum Information Seminar
Advanced Optical Sensing
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Quantum shot noise: from Schottky to Bell Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006

1st-”Revolution” Making quantum mechanics visible 2 Making quantum mechanics visible Looking at indvidual quantum systems Webb et al. (1985) Persistent currents Aharonov-Bohm effect Universal conductance fluctuations Conductance quantization diffusive …. ballistic

2nd-”Revolution” Quantum correlations 3 Quantum correlations Paradigme of Einstein, Podolsky and Rosen ; Bell Quantum communication Quantum computation

Spin entanglement N S Dot & superconductor entanglers 4 Dot & superconductor entanglers Recher et al. PRB 63 165314 (2001) Lesovik et al. EPJB 24, 287 (2001) Oliver et al PRL 88 037901 (2002) Bena et al PRL 89 037901 (2002) Saraga and Loss, PRL 90 166803 (2003)....... ........................ S N + Long spin coherence length - Difficult to manipulate/detect

Orbital entanglement Normal conductors NS-structures 5 Normal conductors NS-structures Electron-hole picture Pair-tunneling picture Samuelsson, Sukhorukov, Büttiker, PRL 91, 157002 (2003) Beenakker, Emary, Kindermann, van Velsen, PRL 91, 147901 (2003)

Quantum versus classical shot noise 6 Classical shot noise: W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918) Quantum shot noise: Khlus (1987), Lesovik (1989), Yurke and Kochanski (1989), Buttiker (1990), Beenakker and van Houten (1991)

Shot Noise: Two-terminal 7 Shot Noise: Two-terminal Quantum partition noise: kT = 0, V>0, If all Buttiker (1990) Schottky (Poisson) Fano factor Experiments: Kumar, (Glattli) et al. PRL 76, 2778 (1996) Reznikov (Heiblum) et al. PRL 75, 3340 (1995)

Shot Noise: Multi-terminal 8 Shot Noise: Multi-terminal Mesoscopic conductor with N contacts At kT = 0, At kT = 0, M contacts with N-M contacts at M=1, partition noise M > 1, relative phase of scattering matrix elements becomes important Exchange interference effects: Buttiker, PRL 68, 843 (1992)

HBT-Intensity Interferometer 9 Hanbury Brown and Twiss, Nature 177, 27 (1956) Interference not of amplitudes but of intensities Optics: classical interpretation possible Quantum mechanical explanation: Purcell, Nature 178, 1449 (1956) Indistinguishable particles: Statistics, exchange amplitudes "The Quantum Phase of Flux Correlations in Wave Gudies", Buttiker, Physica B175, 199 (1991); PRL 68, 843, (1992).

Two-particle interferometer 10 Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004) All elements of the conductance matrix are independent of AB-flux

Two-particle Aharonov-Bohm Effect 11 Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004) Spin polarized For [N >2 ; Sim and Sukhorukov (2006)]

Two-particle entanglement 12 Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004) tunneling limit Tunnel limit: incident state orbitally entangled e-h-state

Entanglement test: Bell Inequality 13 Entanglement test: Bell Inequality Comparison of classical local theory with quantum mechanical prediction. Here: entanglement test Bell Inequality: Clauser et al, PRL 23, 880 (1969) 16 measurements Orbital violation of BI implies entanglement but not all entgangled states violate BI not invarinant under local rotations Chtchelkatchev et al, PRB 66, 161320 (2002); Samuelsson et al. PRL 91, 157002 (2003) Faoro, Taddei, Fazio, PRB 69, 125326 (2004)

Electron-electron entanglement through postselection Symmetric interferometer 14 Electron-hole picture not appropriate Incident electron state is a product state: no intrinsic entanglement Two-particle effects nevertheless persists A Bell Inequality can be violated Explanation: Entanglement through ``postselection'' (measurement) Joint detection probability Bell parameter (Bell Inequality): Short time statistics: Pauli principle leads to injection of at most one electron in a short time interval: only two-particle transmission probability enters

Two-particle Intensity Interferometers 15 Two-particle Intensity Interferometers Glattli et al. Schoenenberger Heiblum et al. but …

Dynamic electron-hole generation 16 Dynamic electron-hole generation Samuelsson and Buttiker, Phys. Rev. B 72, 155326 (2005) C. W. J. Beenakker, M. Titov, and B. Trauzettel, Phys. Rev. Lett. 94, 186804 (2005) Rychkov, Polianski, Buttiker, Phys. Rev. B 72, 155326 (2005) Multi-particle correlations of an oscillating scatterer, M. Moskalets, M. Buttiker, 73, 125315 (2006).

Tomography: Medical 17 Cormack and Hounsfield J. Radon, 1917

Pauli’s question Pauli’s question (1933) : Pauli question generalized: 18 M. G. Raymer, Contemporary Physics, 38, 343 (1997) Pauli’s question (1933) : Can the wave function be determined uniquely from the distribution of position and momentum? No: such data is not tomographically complete. Pauli question generalized: Can one infer the whole complex function from some series of measurements on a large collection of identically prepared particles? Yes. J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1997)

Continuous variable tomography 19 Wigner function measure with Radon transformation obtain Wigner function from Wigner obtain via inverse Fourier transform taking gives

Quantum State Tomography: Experiments 20 Angular momentum state of an electron in hydrogene atom J.R. Ashburn et al, Phys. Rev. A 41, 2407 (1990). Quantum state of squeezed light D.T. Smithey et al, Phys. Rev. Lett. 70, 1244 (1993). Vibrational state o a molecule T.J. Dunn, et al, Phys. Rev. Lett. 74, 884 (1995). Trapped ions D. Liebfried et al, Phys. Rev. Lett. 77, 4281 (1996). Atomic wave packets Ch. Kurtsiefer, T. Pfau, and Mlynek, Nature 386, 150 (1997). Polarization entangled photons P.G. Kwiat, et al, Nature 409, 1014 (2001); T. Yamamoto et al, ibid 421, 343 (2003).

Quantum Tomography with current and shot noise measurements 21 A complete reconstruction of one and two particle density matrices with current and shot-noise mesurements Samuelsson, Büttiker, Phys. Rev. B 73, 041305 (2006) Matrix elements Entanglement determined by

Quantum state tomography with quantum shot noise 22 P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006) Reconstruction of one-particle d.m.

Quantum State Tomography with shot noise 23 Quantum State Tomography with shot noise P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006) reduced density matrix single particle two particle 8 current measurements 16 current correlation measurements ( same as for BI but in contrast to BI, completely determines entanglement )

Summary Shot noise correlations probe two-particle physics 24 Shot noise correlations probe two-particle physics Two-particle Aharonov-Bohm interferometer Bell test of orbital entanglement Orbital quantum state tomography Shot noise measurements determine the reduced two-particle density matrix up to local rotations Tomography delivers not only a criteria for entanglement but allows to experimentally quantify entanglement

24 Example: HBT geometry