Perception
Figure 7.17 Receptive fields and adaptation rates of touch receptors Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
Somatosenses Pacinian corpuscles –Hairy and hairless skin –Joints, muscles, internal organs, etc –Sense high frequency vibrations –Largest sensory receptors in body –Large receptive fields
Somatosenses Free nerve endings –Hairy and hairless skin –Sense temperature change (firing rate corresponds to heat or cold) –High threshold and low threshold –Sense pain Fast pain: injection, cut; mylineated type A fibers Slow pain: cell damage; unmylinated type C fibers
How does sensory information get from skin to the brain?
From skin to brain Neurons carry sensory information from cutaneous receptors
From skin to brain They reach the spinal cord, gather together as they enter spinal cord, and carry that info to the brain
Figure 2.10b Dermatomes Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
Mapping the Somatosensory Cortex Take people who are wide awake, under local anesthesia Stimulate different parts of sensory cortex sensations in various parts of the body Figure 7.19 The somatosensory cortex Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
Pain
The Gate Control Theory of Pain
What’s the “gate” in “gate control theory”? Periaqueductal gray (PAG) in midbrain Inhibitory interneurons in spinal cord and lower brain stem Figure 7.20
What’s the “gate” in “gate control theory”? Nerve fibers carry pain messages to the spinal cord There are “gates” in the spinal cord that control how much of the pain messages actually get to pass through to the brain The brain sends signals to the spinal cord to control how much the “gate” is open or shut
Activity in PAG activates inhibitory interneurons blocks pain from entering brain
What causes the “gate” to be open? Physical reasons Cognitive (mental) reasons Emotional reasons
Soldiers vs. civilians WW-II Soldiers Severe combat wounds One out of 5 needed morphine Civilians Trauma wounds One out of 3 needed morphine X
Soldiers vs. civilians WW-II Soldiers Severe combat wounds One out of 5 needed morphine Meaning of injury: survived the battlefield, were returning home Civilians Trauma wounds One out of 3 needed morphine Meaning of injury: prospect of surgery, loss of job/income, disability X
Anterior cingulate cortex –Emotional aspects of pain
Phantom Limb Pain
Neuromatrix Theory of Pain Explains things about pain that gate control theory does not explain Neuromatrix: map of body parts in neocortex –Phantom limb pain
The Motor System Movement
Figure 8.13 The cortical control of movement Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
Figure 8.14 Rhea hitting a fairway iron Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
1. Dorsolateral Prefrontal Cortex Plan and prepare for movement Takes information from senses to decide next movement
2. Secondary Motor Cortex Supplementary motor area and premotor cortex Planning and sequencing movement, based on info from dorsolateral prefrontal cortex Study regarding monkey and pushing a peanut through a hole
3. Primary Motor Cortex
Figure 8.13 The cortical control of movement Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
4. Primary Somatosensory Cortex For example, senses from muscles and joints
5. Posterior Parietal Cortex Combines info from what you see, hear and feel on your skin –E.g., golf, locating light switch in the dark
Other parts of the brain involved in movement
Cerebellum and Basal Ganglia
Cerebellum
The Cerebellum Movements that require accurate aim X
The Cerebellum Movement of eyes to focus on something Speech X
The Basal Ganglia Controls posture and muscle tone
Figure 2.23 The basal ganglia Klein/Thorne: Biological Psychology © 2007 by Worth Publishers
Parkinson’s Disease Not enough dopamine being produced in substantia nigra, less dopamine to basal ganglia Movements are rigid and slow Tremors Problems with starting to move and think
Contralateral –Different side Ipsilateral –Same side