Multiplicity Distributions and Percolation of Strings J. Dias de Deus and C. Pajares CENTRA,Instituto Superior Tecnico,Lisboa IGFAE,Universidade de Santiago.

Slides:



Advertisements
Similar presentations
Zi-Wei Lin (ECU) 28th WWND, Puerto Rico April 10, Update of Initial Conditions in A Multiple Phase Transport (AMPT) Model Zi-Wei Lin Department.
Advertisements

Eccentricity and v2 in proton-proton collisions at the LHC
What do we Learn From Azimuthal Correlation Measurements in PHENIX Roy. A. Lacey Nuclear Chemistry, SUNY, Stony Brook.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Equation of State in the framework of percolation C. Pajares. Univ. Santiago de Compostela In collaboration with J. Dias de Deus, B. Srivastava, A. Hirsch,
Initial and final state effects in charmonium production at RHIC and LHC. A.B.Kaidalov ITEP, Moscow Based on papers with L.Bravina, K.Tywoniuk, E.Zabrodin.
Direct Photon Production in pp collisions at the LHC Théorie LHC France 06 April 2010 IPN Lyon F.M. Liu IOPP/CCNU, Wuhan, China K. Werner Subatech, Nantes,
Direct Photon Production in pp collisions at the LHC 第 8 届高能物理大会分会 南昌 F.M. Liu IOPP/CCNU, Wuhan, China.
1 Zakopane, June 06, HB Wounded Nucleons, Wounded Quarks, and Relativistic Ion Collisions Helena Białkowska Institute for Nuclear Studies Warsaw.
The Color Glass Condensate and RHIC Phenomenology Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons?
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
1 D. Kharzeev Nuclear Theory BNL Alice Club, CERN TH, May 14, 2007 Non-linear evolution in QCD and hadron multiplicity predictions for the LHC.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
Terence Tarnowsky Long-Range Multiplicity Correlations in Au+Au at Terence J Tarnowsky Purdue University for the STAR Collaboration 22nd Winter Workshop.
Percolation & The Phase Transition 1 Bring your own Phase Diagram TIFR, Mumbai, India Dec , 2010 Brijesh K Srivastava Department of Physics West.
Marcus Bleicher, Santiago de Compostela 2006 Particle number fluctuations and correlation Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
Materia a alta densidad (de SPS y RHIC a LHC) Carlos Pajares Universidade de Santiago de Compostela Multiplicity Parton Saturation Elliptic Flow. sQGP,
Current status of the long- range correlations analysis in Be+Be at 150 AGeV/c E. Andronov, A. Seryakov NA61/NA49 Collaboration meeting Dubna, 10/04/14.
Cold nuclear matter effects on dilepton and photon production Zhong-Bo Kang Los Alamos National Laboratory Thermal Radiation Workshop RBRC, Brookhaven.
Event Simulation Tools in ALICE Andreas Morsch Generator Mini-Workshop CERN, Geneva June 20, 2003.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
First correction to JIMWLK evolution from the classical EOMs N. Armesto 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions.
Glauber shadowing at particle production in nucleus-nucleus collisions within the framework of pQCD. Alexey Svyatkovskiy scientific advisor: M.A.Braun.
Rapidity correlations in the CGC N. Armesto ECT* Workshop on High Energy QCD: from RHIC to LHC Trento, January 9th 2007 Néstor Armesto Departamento de.
As one evolves the gluon density, the density of gluons becomes large: Gluons are described by a stochastic ensemble of classical fields, and JKMMW argue.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
The Color Glass Condensate Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons? What are the possible.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
U N C L A S S I F I E D 7 Feb 2005 Studies of Hadronic Jets with the Two-Particle Azimuthal Correlations Method Paul Constantin.
LONG RANGE CORRELATIONS;EVENT SIMULATION AND PARTON PERCOLATION C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela,Spain BNL Glasma.
Long Range Correlations,Parton Percolation and Color Glass Condensate C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela,Spain.
STRING COLOR FIELDS PREDICTIONS for pp at LHC C.Pajares University Santiago de Compostela Quantum Field Theory in Extreme Environments,Paris April 2009.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Jet Physics in ALICE Mercedes López Noriega - CERN for the ALICE Collaboration Hot Quarks 2006 Villasimius, Sardinia - Italy.
Energy Dependence of ϕ -meson Production and Elliptic Flow in Au+Au Collisions at STAR Md. Nasim (for the STAR collaboration) NISER, Bhubaneswar, India.
Marzia Nardi CERN – Th. Div. Hadronic multiplicity at RHIC and LHC Hadronic multiplicity at RHIC and LHC Korea-EU ALICE Collab. Oct. 9, 2004, Hanyang Univ.,
Pp and d-Au at RHIC Contents: Interesting data from RHIC High parton densities pp and d-Au results Conclusion Fuming LIU (IOPP, Wuhan), Tanguy Pierog,
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
Lecture 07: particle production in AA collisions
System-size dependence of strangeness production, canonical strangeness suppression, and percolation Claudia Höhne, GSI Darmstadt.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
The Color Glass Condensate and Glasma What is the high energy limit of QCD? What are the possible form of high energy density matter? How do quarks and.
Zhangbu Xu, CIPANP Global Observables & PID Spectra From STAR Global Observables: Gluon Saturation Minijet Contribution Phase Transition Effect of.
QM2008 Jaipur, India Feb.4– Feb. 10, STAR's Measurement of Long-range Forward- backward Multiplicity Correlations as the Signature of “Dense Partonic.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Energy and  B dependence in heavy ion collisions D. Kharzeev BNL “From high  B to high energy”, BNL, June 5, 2006.
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
Entropy at high E and μ B Peter Steinberg Brookhaven National Laboratory “Critical Point & Onset of Deconfinement” (deco) Workshop Galileo Galilei Institute,
Charm elliptic flow at RHIC B. Zhang 1, L.W. Chen 2, C.M. Ko 3 1 Arkansas State University, 2 Shanghai Jiao Tong University, 3 Texas A&M University Charm.
QGP-Meet’06, VECC, Kolkata. 6 th Feb-2006 RAGHUNATH SAHOO, INSTITUTE OF PHYSICS, BHUBANESWAR TRANSVERSE ENERGY PRODUCTION AT RHIC OUTLINE: Introduction.
Zbigniew Majka M.Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland Review of early results from BRAHMS experiment.
Production of strange particles at RHIC via quark recombination C.B. Yang Institute of Particle Physics, Wuhan, China Collaborated with Rudolph C. Hwa.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
1 Brijesh K Srivastava Department of Physics & Astronomy Purdue University, USA in collaboration with A. S. Hirsch & R. P. Scharenberg ( Purdue University)
Strange hadrons and resonances at LHC energies with the ALICE detector INPC 2013 Firenze, Italy 2 -7 June 2013 A. Badalà (INFN Sezione di Catania) for.
ICPAQGP 2010 Goa, Dec. 6-10, Percolation & Deconfinement Brijesh K Srivastava Department of Physics Purdue University USA.
IOPP, Wuhan China1 Reduction of strange quark suppression and strange hadron production in p-p and A-A collisions at RHIC and LHC Sheng-Qin Feng China.
Department of Physics & Astronomy
PREDICTIONS for the HIGH DENSITY PROGRAMME at the LHC
Onset of some critical phenomena in AA collisions at SPS energies
De-Confinement and the Clustering of
Kinetic Theory.
With water up to the neck!
Kinetic Theory.
Strong color fields in AA and pp high multiplicity events
Kinetic Theory.
INTRODUCTION TO HIGH DENSITY QCD
of Hadronization in Nuclei
Claudia Höhne, GSI Darmstadt
Presentation transcript:

Multiplicity Distributions and Percolation of Strings J. Dias de Deus and C. Pajares CENTRA,Instituto Superior Tecnico,Lisboa IGFAE,Universidade de Santiago de Compostela Clustering of color sources Fragmentation of clusters Results Conclusions CERN, May 14th June 8th 2007

Color strings are stretched between the projectile and target Strings = Particle sources: particles are created via sea qq production in the field of the string Color strings = Small areas in the transverse space filled with color field created by the colliding partons With growing energy and/or atomic number of colliding particles, the number of sources grows So the elementary color sources start to overlap, forming clusters, very much like disk in the 2-dimensional percolation theory In particular, at a certain critical density, a macroscopic cluster appears, which marks the percolation phase transition CLUSTERING OF COLOR SOURCES

(N. Armesto et al., PRL77 (96); J.Dias de Deus et al., PLB491 (00); M. Nardi and H. Satz(98). How?: Strings fuse forming clusters. At a certain critical density η c (central PbPb at SPS, central AgAg at RHIC, central SS at LHC ) a macroscopic cluster appears which marks the percolation phase transition (second order, non thermal). Hypothesis: clusters of overlapping strings are the sources of particle production, and central multiplicities and transverse momentum distributions are little affected by rescattering.

Energy-momentum of the cluster is the sum of the energy-momemtum of each string. As the individual color field of the individual string may be oriented in an arbitrary manner respective to one another,

less than parton saturation (9.5-10), HIJING, … more than extrapolation from SPS and RHIC (6.5) or applying limiting fragmentation (5.5).D.Kharzeev et al (6.8) RESULTS

CONCLUSIONS Violation of limiting fragmentation charged particles per unit rapidity at y=0 (less than most dynamical models)