Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig.

Slides:



Advertisements
Similar presentations
What’s quasi-equilibrium all about?
Advertisements

Some questions on convection that could be addressed through another UK field program centered at Chilbolton Dan Kirshbaum 1.
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
1 October 26, th COPS Workshop, Cambridge, UK COPS (Convective and Orographically-induced Precipitation Study) Goal: Advance the quality of forecasts.
COSMO-SREPS COSMO Priority Project C. Marsigli, A. Montani and T. Paccagnella ARPA-SIM, Bologna, Italy.
Meteorologisches Institut der Universität München
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
GM versus LAM: one case of deep convection (27 August 2001) Manuel João Lopes; Margarida Belo Pereira; Pedro Miranda Instituto de Meteorologia Faculdade.
14th ALADIN Workshop, Innsbruck 1-4 June 2004 First LAMEPS experiments at the Hungarian Meteorological Service Edit Hágel and Gabriella Szépszó Hungarian.
The convection-permitting ensemble COSMO-DE-EPS From development to applications Susanne Theis, Christoph Gebhardt, Michael Buchhold Deutscher Wetterdienst.
Institut für Physik der Atmosphäre WG4: Data Assimilation and Predictability George C. Craig DLR-Institut für Physik der Atmosphäre.
Performance Characteristics of a Pseudo-operational Ensemble Kalman Filter April 2006, EnKF Wildflower Meeting Greg Hakim & Ryan Torn University of Washington.
Institut für Physik der Atmosphäre ETReC 2007 Hans Volkert (for G. C. Craig) DLR-Institut für Physik der Atmosphäre.
Institut für Physik der Atmosphäre ETReC 2007 George C. Craig DLR-Institut für Physik der Atmosphäre.
Ensemble Post-Processing and it’s Potential Benefits for the Operational Forecaster Michael Erickson and Brian A. Colle School of Marine and Atmospheric.
WWOSC 2014 Assimilation of 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale WWOSC 2014 Theresa Bick 1,2,* Silke Trömel.
Climatology and Predictability of Cool-Season High Wind Events in the New York City Metropolitan and Surrounding Area Michael Layer School of Marine and.
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
Forecasting and Numerical Weather Prediction (NWP) NOWcasting Description of atmospheric models Specific Models Types of variables and how to determine.
1 On the use of radar data to verify mesoscale model precipitation forecasts Martin Goeber and Sean Milton Model Diagnostics and Validation group Numerical.
Short-Range Ensemble Prediction System at INM José A. García-Moya & Carlos Santos SMNT – INM COSMO Meeting Zurich, September 2005.
WWOSC 2014, Aug 16 – 21, Montreal 1 Impact of initial ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model.
ISDA 2014, Feb 24 – 28, Munich 1 Impact of ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model Florian.
How can LAMEPS * help you to make a better forecast for extreme weather Henrik Feddersen, DMI * LAMEPS =Limited-Area Model Ensemble Prediction.
“High resolution ensemble analysis: linking correlations and spread to physical processes ” S. Dey, R. Plant, N. Roberts and S. Migliorini Mesoscale group.
COSMO General Meeting, Offenbach, 7 – 11 Sept Dependance of bias on initial time of forecasts 1 WG1 Overview
COSMO-SREPS Priority Project C. Marsigli ARPA-SIM - HydroMeteorological Service of Emilia-Romagna, Bologna, Italy.
Model Resolution Prof. David Schultz University of Helsinki, Finnish Meteorological Institute, and University of Manchester.
The 2nd International Workshop on GPM Ground Validation TAIPEI, Taiwan, September 2005 GV for ECMWF's Data Assimilation Research Peter
Short-Range Ensemble Prediction System at INM José A. García-Moya SMNT – INM 27th EWGLAM & 12th SRNWP Meetings Ljubljana, October 2005.
Data assimilation, short-term forecast, and forecasting error
KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association Variability in forecasts of the track.
An ensemble study of HyMeX IOP6 and IOP7a Alan Hally (1,2), Evelyne Richard (1), Véronique Ducrocq (2) (1)LA, University of Toulouse, France (2)CNRM, Météo-France,
Interoperability at INM Experience with the SREPS system J. A. García-Moya NWP – Spanish Met Service INM SRNWP Interoperability Workshop ECMWF –
Plans for Short-Range Ensemble Forecast at INM José A. García-Moya SMNT – INM Workshop on Short Range Ensemble Forecast Madrid, October,
SREPS Priority Project COSMO General Meeting Cracov 2008 SREPS Priority Project: final report C. Marsigli, A. Montani, T. Paccagnella ARPA-SIM - HydroMeteorological.
“High resolution ensemble analysis: linking correlations and spread to physical processes ” S. Dey Supervisors: R. Plant, N. Roberts and S. Migliorini.
COSMO-DE-EPS Susanne Theis, Christoph Gebhardt, Michael Buchhold,
Perturbation of Parametrized Tendencies and Surface Parameters in the Lokal-Modell Susanne Theis Andreas Hense Ulrich Damrath Volker Renner.
SREPS Priority Project: final report C. Marsigli, A. Montani, T. Paccagnella ARPA-SIMC - HydroMeteorological Service of Emilia- Romagna, Bologna, Italy.
FE 1 Ensemble Predictions Based on the Convection-Resolving Model COSMO-DE Susanne Theis Christoph Gebhardt Tanja Winterrath Volker Renner Deutscher Wetterdienst.
Short Range Ensemble Prediction System Verification over Greece Petroula Louka, Flora Gofa Hellenic National Meteorological Service.
CONSENS Priority Project Status report COSMO year 2009/2010 Involved scientists: Chiara Marsigli, Andrea Montani, Tiziana Paccagnella, Tommaso Diomede.
Deutscher Wetterdienst Preliminary evaluation and verification of the pre-operational COSMO-DE Ensemble Prediction System Susanne Theis Christoph Gebhardt,
NWP models. Strengths and weaknesses. Morten Køltzow, met.no NOMEK
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
Short-Range Ensemble Prediction System at INM García-Moya, J.A., Santos, C., Escribà, P.A., Santos, D., Callado, A., Simarro, J. (NWPD, INM, SPAIN) 2nd.
Joint SRNWP/COST-717 WG-3 session, Lisbon Stefan Klink Data Assimilation Section Early results with rainfall assimilation.
Vincent N. Sakwa RSMC, Nairobi
PP CONSENS Merging COSMO-LEPS and COSMO- SREPS for the short-range Chiara Marsigli, Tiziana Paccagnella, Andrea Montani ARPA-SIMC, Bologna, Italy.
A physical initialization algorithm for non-hydrostatic NWP models using radar derived rain rates Günther Haase Meteorological Institute, University of.
Kain-Fritsch convection scheme: an update Marco Arpagaus MeteoSwiss.
Status of the NWP-System & based on COSMO managed by ARPA-SIM COSMO I77 kmBCs from IFSNudgingCINECA COSMO I22.8 kmBCs from COSMO I7 Interpolated from COSMO.
COSMO model simulations for COPS IOP 8b, 15 July 2007 Jörg Trentmann, Björn Brötz, Heini Wernli Institute for Atmospheric Physics, Johannes Gutenberg-University.
Predicting Intense Precipitation Using Upscaled, High-Resolution Ensemble Forecasts Henrik Feddersen, DMI.
Xuexing Qiu and Fuqing Dec. 2014
Radar Data Assimilation
Daniel Leuenberger1, Christian Keil2 and George Craig2
A. Topographic radiation correction in COSMO: gridscale or subgridscale? B. COSMO-2: convection resolving or convection inhibiting model? Matteo Buzzi.
COSMO-DE-EPS Susanne Theis, Christoph Gebhardt, Michael Buchhold,
New Developments in Aviation Forecast Guidance from the RUC
Preliminary test for the development of a 2.8km ensemble over Italy
Rita Roberts and Jim Wilson National Center for Atmospheric Research
42h forecast HIRLAM 50km 24h accumulated precipitation.
SRNWP-PEPS COSMO General Meeting September 2005
Short Range Ensemble Prediction System Verification over Greece
The Impact of Moist Singular Vectors and Horizontal Resolution on Short-Range Limited-Area Ensemble Forecasts for Extreme Weather Events A. Walser1) M.
Presentation transcript:

Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig Meteorologisches Institut, Ludwig-Maximilians-Universität, München

Institut für Physik der Atmosphäre Motivation 1.Predictability, or forecast uncertainty, of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. 2.Forced-frontal convective precipitation associated with synoptic weather patterns may be predictable for several days and is primarily governed by lateral boundary conditions in limited area models. 3.Single convective cells developing during air-mass convection situations, which of themselves are predictable only for a matter of hours, are frequently triggered by local, small-scale processes enforced e.g. by mountain ridges and are anticipated to react sensitively to changes in the model physics.

Institut für Physik der Atmosphäre Tools and Ingredients 1. Forecasts of experimental COSMO-DE-EPS of DWD 2. Period in August 2007 during COPS characterized by different meteorological situations 3. COPS country 4. Observational data of the European Radar composite 5. Radar reflectivity dBZ_850 > 19 xx:15 UTC 360 x 360 km 2

Institut für Physik der Atmosphäre COSMO-DE-EPS: a cloud resolving DWD

Institut für Physik der Atmosphäre ECMWF DWD NCEP UKMO COSMO-DE-EPS: 4 global models

Institut für Physik der Atmosphäre COSMO-DE-EPS: 5 physics perturbations Entrainment rate cloud cover at saturation laminar layer depth maximal turbulent length scale laminar layer depth

Institut für Physik der Atmosphäre Measures and Methods 1. BIAS Score: BIAS= to indicate whether the forecast system has a tendency to underforecast (BIAS 1) events. 2. Concept of convective timescale to describe two mechanisms for control of convection 3. Displacement and Amplitude Score DAS a novel spatial verification measure employing an areal image matcher using classical optical flow technique hits + false alarms hits + misses Keil, C. and G. C. Craig, 2009: A displacement and amplitude score employing an optical flow technique. Wea. and Forecasting, 24,

Institut für Physik der Atmosphäre BIAS of COSMO-DE-EPS Aug COPS IOP15 Z > 19 dbz ECMWF DWD NCEP UKMO

Institut für Physik der Atmosphäre Convection on 12 Aug 2007 observed by Radar

Institut für Physik der Atmosphäre COSMO-DE-EPS on 12 Aug :15 UTC Radar

Institut für Physik der Atmosphäre COSMO-DE-EPS on 12 Aug :15 UTC Radar

Institut für Physik der Atmosphäre BIAS of COSMO-DE-EPS on 12 Aug 2007 Z > 19 dbz ECMWF DWD NCEP UKMO

Institut für Physik der Atmosphäre 2 regimes on 12 Aug BIAS score allows the separation between locally forced precipitation (triggered situations) and synoptically forced precipitation (equilibrium) ECMWF DWD NCEP UKMO triggered equilibrium

Institut für Physik der Atmosphäre Measures and Methods 1. BIAS Score: BIAS= to indicate whether the forecast system has a tendency to underforecast (BIAS 1) events. 2. Concept of convective timescale to describe two mechanisms for control of convection hits + false alarms hits + misses

Institut für Physik der Atmosphäre Two mechanisms for control of convection Convective timescale (Done et al. 2006)  CAPE CAPE dCAPE/dt Precip. rate  c = ~ Height Temperature CAPE CIN 1. Dynamical production of CAPE: Equilibrium - convection removes CAPE rapidly in comparison to the rate it is being generated 2. Local perturbations to overcome CIN: Triggered - large amounts of CAPE can build up if triggers not present To identify regime, consider timescale over which convection removes CAPE

Institut für Physik der Atmosphäre Time series of convective timescale 12-20UTC: ~25 hrs Triggered convection 20-24UTC: ~ 5 hrs Equilibrium convection

Institut für Physik der Atmosphäre Convective timescale vs ensemble spread triggered equilibrium convection

Institut für Physik der Atmosphäre Convective timescale vs ensemble spread equilibrium triggered

Institut für Physik der Atmosphäre Mean bias score vs ensemble spread of all days

Institut für Physik der Atmosphäre Mean bias score vs ensemble spread of all days equilibrium triggered

Institut für Physik der Atmosphäre Summary 1. Triggered convection: forecast sensitive to changes in the model physics,  c of more than a few hours 2. Equilibrium convection: control of convection by synoptic forcing determining the creation of instability, short convective timescale  c Two predictability regimes can be distinguished depending on the control of convection as measured by mean and spread of BIAS score the convective adjustment timescale  c

Institut für Physik der Atmosphäre Questions?

Institut für Physik der Atmosphäre COSMO-DE-EPS 20 Member Ensemble at horizontal resolution of Δx=2.8km 4 Global Models: Member 1-5: EZMW Member 6-10: GME Member 11-15: NCEP Member 16-20: UKMO 5 physics perturbations: Member 1,6,11,16: entrscv=0.002 Member 2,7,12,17: clc_diag=0.5 Member 3,8,13,18: rlam_heat=50 Member 4,9,14,19: rlam_heat=0.1 Member 5,10,15,20: tur_len=150