Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Slides:



Advertisements
Similar presentations
Quantum optical effects with pulsed lasers
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
WP1.4: Single trapped Atoms
Quantum trajectories for the laboratory: modeling engineered quantum systems Andrew Doherty University of Sydney.
Nonlinear microwave optics in superconducting quantum circuits Zachary Dutton Raytheon BBN Technologies BBN collaborators Thomas Ohki John Schlafer Bhaskar.
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Non-Gaussianity as a power-up for quantum communication and estimation Gerardo Adesso.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS.
Entanglement of Collective Quantum Variables for Quantum Memory and Teleportation N. P. Bigelow The Center for Quantum Information The University of Rochester.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Light-Matter Quantum Interface
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Quantum Information with Continuous Variables Klaus Mølmer University of Aarhus, Denmark Supported by the European Union and The US Office of Naval Reseach.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Single atom lasing of a dressed flux qubit
Quantum Devices (or, How to Build Your Own Quantum Computer)
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
COLLISIONS IN ULTRACOLD METASTABLE HELIUM GASES G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, C. I. Westbrook Laboratoire Charles Fabry de l’Institut.
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Quantum Dense coding and Quantum Teleportation
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Copyright © 2006 Keio University Applications of an Entangled Quantum Internet Conference on Future Internet Technologies Seoul, Korea June 20, 2008 Rodney.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Pablo Barberis Blostein y Marc Bienert
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Quantum teleportation between light and matter
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
1/30 University of Toronto, 28 March 2005 Quantum Information Processing with Atoms and Light Daniel F. V. James Group T-4, Los Alamos National Lab University.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
|| Quantum Systems for Information Technology FS2016 Quantum feedback control Moritz Businger & Max Melchner
Quantum Interface through Light-Atom Interactions in Atomic Ensemble Hsiang-Hua Jen ( 任祥華 ) Postdoc in Prof. Daw-Wei Wang’s group, NTHU 2011 Condensed.
Jiří Minář Centre for Quantum Technologies
Quantum Computing from theory to experiments
Strong coupling of a superradiant spin ensemble B. C. Rose, A. M
Coupled atom-cavity system
Quantum Information with Continuous Variables
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Advanced Optical Sensing
Efficient optical pumping and quantum storage in a Nd:YVO nanocavity
Presentation transcript:

Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik

Interface matter-light as quantum channel We concentrate on: deterministic high fidelity * state transfer Fidelity of quantum transfer - State overlap averaged over the set of input states *) Fidelity higher than any classical measure-recreate protocol can achieve

Light – matter quantum interface Probabilistic entanglement distribution (DLCZ and the like) Deterministic transfer of quantum states between light and matter Photon counting – based protocols typical efficiency 10-50% Homodyning – based protocols (99% detectors) Hybrid approaches (Schrödinger cats and the like) K. Hammerer, A. Sørensen, E.P. Reviews of Modern Physics, 2010 arXiv:

Quantum interface – basic interactions X-type = double Λ interaction Light-Atoms Entanglement Innsbruck, Copenhagen, GIT, Caltech, Harvard, Heidelberg Light-to-Atoms mapping (memory) Aarhus, Harvard, Caltech, GIT Rochester, Copenhagen, Caltech, Garching, Arisona…

Quantum memory beyond classical benchmark Atoms Fidelity of quantum storage - State overlap averaged over the set of input states

Classical benchmark fidelity for state transfer for different classes of states: Coherent states (2005) N-dimentional Qubits ( ) NEW! Displaced squeezed states (2008) Fidelity exceeds the classical benchmark memory preserves entanglement

Classical benchmark fidelity for state transfer is known for the classes of states: Best classical fidelity for coherent states is 50% 1. Coherent states 3. Displaced squeezed states: M.Owari, M.Plenio, E.P., A.Serafini, M.M.Wolf New J. of Physics (2008); Adesso, Chiribella (2008) 2. Qubits Best classical fidelity 2/3 Experimental demonstration: Ion to ion teleportation NIST’04; Innsbruck’04 F=78% Experimental demonstrations of F>F Cl : Light to light teleportation Caltech’98 F=58% Light to matter teleportation Copenhagen’06 F=58%

x Quantum field: EPR entangled Polarizing cube Polarizing Beamsplitter 45 0 /-45 0 Stokes operators and canonical variables S 2 measurement

Two-mode squeezed = EPR entangled mode OPOSHG

Atom-compatible EPR state Atomic memory compatible squeezed light source Bo Metholt Nielsen, Jonas Neergaard - 6 dB two mode squeezed = EPR entangled light

Spin polarized ensemble as T=0 0 Harmonic oscillator J y ~P J z ~X JxJx F=4 F=3 6P 3/2 6S 1/2 Cesium m F =3 m F =4 Harmonic oscillator in the ground state at room temperature

10 12 Room Temperature atoms Cesium % initialization to ground state Harmonic oscillator in a ground state

x Quantum field Polarizing cube Polarizing Beamsplitter 45 0 /-45 0 Quantum nondemolition interaction: 1. Polarization rotation of light Polarization of light

x Strong field A(t) Quantum field - a Polarizing cube Atoms y Quantum nondemolition interaction: 2. Dynamic Stark shift of atoms Atomic spin rotation Z Z- quantization

Atoms IN Stronger coupling: atom-photon state swap plus squeezing W. Wasilewski et al, Optics Express 2009 Photons IN Atoms OUT Photons OUT 12

Quantum feedback onto atoms B B RF Its just a ~π/√N pulse Goal: rotate atomic spin ~ to measured photonic operator value

2 Detectors 1 K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik. Nature Physics 7 (1), pp (2011)

Displaced two-mode squeezed (EPR) states Coherent EPR entangled = two-mode squeezed Displaced two-mode squeezed

Memory in atomic Zeeman coherences Cesium Example: 3 dB (factor of 2) spin squeezed state Cs atoms at RT in a ”magic” cell

M F = 4 M F = 3 M F = -3 M F = -4 M F = 5,4,3 ~ 1000 MHz 320 kHz Storing ± Ω modes in superpositions of atomic Zeeman coherences kHz

Cell 1 Cell 2 Two halves of entangled mode of light are stored in two atomic memories

Squeezed states – classical benchmark fidelity: M.Owari et al New J. Phys ξ -1 – squeezed variance ξ -1 Best classical fidelity vs degree of squeezing for arbitrary displaced states ξ -1

Optical pumping and squeezing of atomic state Input pulse Readout pulse Rf feedback Π-pulse Squeezed light source Strong field

Alphabet of input states, 6 dB squeezed and displaced Vacuum state variances = 0.5 Imperfections: Transmission from the source to memory 0.8 Transmission through the memory input window 0.9 Detection efficiency 0.79 Memory added noise: 0.47(6) in X A, 0.38(11) in P A Ideally should be: 0.36 in X A and 0 in P A

CV entangled states stored with F > F classical

Thomas Fernholz Hanna Krauter Kasper Jensen Lars Madsen Wojtek Wasilewski

10 12 spins in each ensemble yz x yz x Spins which are “more parallel” than that are entangled Entanglement of two macroscopic objects. Nature, 413, 400 (2001) Einstein-Podolsky-Rosen (EPR) entanglement

Driving field Entanglement generated by dissipation and steady state entanglement of two macroscopic ensembles atoms at RT H. Krauter, C. Muschik, K. Jensen, W. Wasilewski, J. Pedersen, I. Cirac, E. S. Polzik, PRL, August 17, 2011 arXiv: atoms at RT

Driving field Collective dissipation: forward scattering M F = 4 M F = 3 M F = 5,4,3 ~ 1000 MHz 320 kHz M F = -3 M F = -4

Standard form of Lindblad equation for dissipation Lindblad equation for dissipative dynamics of atoms M F = 4 M F = 3 M F = 5,4,3 ~ 1000 MHz 320 kHz M F = -3 M F = -4 Trace over non-observed fields

Pushing entanglement towards steady state Entangling drive t Spin noise probe Optical pumping 50 msec! Optical pumping

time Pump, repump,drive and continuous measurement Steady state entanglement generated by dissipation and continuous measurement We use the continuous measurement (blue time function) to generate continuous entangled state Pure dissipation Macroscopic spin Variance of the yellow measurement conditioned on the result of the blue measurement Steady state entanglement kept for hours

Entanglement maintained for 1 hour Steady state entanglement generated by dissipation and continuous measurement

Quantum teleportation between distant atomic memories 1 2 H.Krauter, J. M. Petersen, T. Fernholz, D.Salart C.Muschik I.Cirac B Bell measurement

320 kHz M F = -3 M F = -4 M F = -3 H=  a - † b † +  Atoms 1 – photons entanglement generation H= a + b † +… Atoms 2 – photons beamsplitter Bell measurement Classical communication

Quantum benchmark for storage and transmission of coherent states. K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94, (2005). Classical feedback gain Variance of the teleported atomic state Process tomography with coherent states Deterministic unconditional and broadband teleportation Rate of teleportation 100Hz Success probability 100% Classical bound

Photonic state F=4 6S 1/2 m F =3 m F =4 Growing material cats N>>>1 │0.3> -│3.0> PRL 2010

Outlook – scalable quantum network