DYNAMIC PROGRAMMING. 2 Algorithmic Paradigms Greedy. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer.

Slides:



Advertisements
Similar presentations
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Advertisements

2015/4/11CS4335 Design and Analysis of Algorithms /Shuai Cheng Li Page 1 Evaluation of the Course (Modified) Course work:30% –Four assignments (25%) 7.5.
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
CSEP 521 Applied Algorithms Richard Anderson Lecture 7 Dynamic Programming.
CSCI 256 Data Structures and Algorithm Analysis Lecture 13 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Dynamic Programming Lecture 9 Asst. Prof. Dr. İlker Kocabaş 1.
Chapter 3 The Greedy Method 3.
Shortest Paths Definitions Single Source Algorithms –Bellman Ford –DAG shortest path algorithm –Dijkstra All Pairs Algorithms –Using Single Source Algorithms.
Shortest Path With Negative Weights s 3 t
Lecture 39 CSE 331 Dec 6, On Friday, Dec 10 hours-a-thon Atri: 2:00-3:30 (Bell 123) Jeff: 4:00-5:00 (Bell 224) Alex: 5:00-6:30 (Bell 242)
Introduction To Bioinformatics Tutorial 2. Local Alignment Tutorial 2.
UNC Chapel Hill Lin/Manocha/Foskey Optimization Problems In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
1 Algorithmic Paradigms Greed. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into.
CPSC 411, Fall 2008: Set 4 1 CPSC 411 Design and Analysis of Algorithms Set 4: Greedy Algorithms Prof. Jennifer Welch Fall 2008.
Dynamic Programming Adapted from Introduction and Algorithms by Kleinberg and Tardos.
Advanced Algorithms Piyush Kumar (Lecture 5: Weighted Matching) Welcome to COT5405 Based on Kevin Wayne’s slides.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 22.
Advanced Algorithms Piyush Kumar (Lecture 5: Weighted Matching) Welcome to COT5405 Based on Kevin Wayne’s slides.
9/10/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Adam Smith Algorithm Design and Analysis L ECTURE 13 Dynamic.
ADA: 7. Dynamic Prog.1 Objective o introduce DP, its two hallmarks, and two major programming techniques o look at two examples: the fibonacci.
1 Algorithmic Paradigms Greed. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into.
Dynamic programming 叶德仕
CSCI 256 Data Structures and Algorithm Analysis Lecture 14 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Algorithm Course Dr. Aref Rashad February Algorithms Course..... Dr. Aref Rashad Part: 6 Shortest Path Algorithms.
Final Exam Review Final exam will have the similar format and requirements as Mid-term exam: Closed book, no computer, no smartphone Calculator is Ok Final.
10/4/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Adam Smith Algorithm Design and Analysis L ECTURE 17 Dynamic.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 17.
Minimum Edit Distance Definition of Minimum Edit Distance.
1 CPSC 320: Intermediate Algorithm Design and Analysis July 28, 2014.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2012 Lecture 17.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2012 Lecture 16.
1 Chapter 6 Dynamic Programming. 2 Algorithmic Paradigms Greedy. Build up a solution incrementally, optimizing some local criterion. Divide-and-conquer.
Lectures on Greedy Algorithms and Dynamic Programming
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 14.
1 Chapter 6-1 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Sequence Alignment Tanya Berger-Wolf CS502: Algorithms in Computational Biology January 25, 2011.
Chapter 6 Dynamic Programming
Optimization Problems In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject to some constraints. (There may.
Instructor Neelima Gupta Instructor: Ms. Neelima Gupta.
CS38 Introduction to Algorithms Lecture 10 May 1, 2014.
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 18.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 21.
15.082J & 6.855J & ESD.78J September 30, 2010 The Label Correcting Algorithm.
Suppose G = (V, E) is a directed network. Each edge (i,j) in E has an associated ‘length’ c ij (cost, time, distance, …). Determine a path of shortest.
1 Chapter 7 Network Flow Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
9/27/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Adam Smith Algorithm Design and Analysis L ECTURE 16 Dynamic.
4.2 - Algorithms Sébastien Lemieux Elitra Canada Ltd.
CS502: Algorithms in Computational Biology
Chapter 6 Dynamic Programming
Algorithm Design and Analysis
Dynamic programming 叶德仕
Analysis of Algorithms CS 477/677
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Richard Anderson Lecture 20 LCS / Shortest Paths
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Dynamic Programming Longest Path in a DAG, Yin Tat Lee
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Evaluation of the Course (Modified)
Data Structures and Algorithm Analysis Lecture 15
Richard Anderson Lecture 20 Space Efficient LCS
Memory Efficient Dynamic Programming / Shortest Paths
Presentation transcript:

DYNAMIC PROGRAMMING

2 Algorithmic Paradigms Greedy. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem. Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

3 Dynamic Programming History Bellman. Pioneered the systematic study of dynamic programming in the 1950s. Etymology. n Dynamic programming = planning over time. n Secretary of Defense was hostile to mathematical research. n Bellman sought an impressive name to avoid confrontation. – "it's impossible to use dynamic in a pejorative sense" – "something not even a Congressman could object to" Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4 Dynamic Programming Applications Areas. n Bioinformatics. n Control theory. n Information theory. n Operations research. n Computer science: theory, graphics, AI, systems, …. Some famous dynamic programming algorithms. n Viterbi for hidden Markov models. n Unix diff for comparing two files. n Smith-Waterman for sequence alignment. n Bellman-Ford for shortest path routing in networks. n Cocke-Kasami-Younger for parsing context free grammars.

Sequence Alignment

6 String Similarity How similar are two strings? n ocurrance n occurrence ocurrance ccurrenceo - ocurrnce ccurrnceo --a e- ocurrance ccurrenceo - 5 mismatches, 1 gap 1 mismatch, 1 gap 0 mismatches, 3 gaps

7 Applications. n Basis for Unix diff. n Speech recognition. n Computational biology. Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] n Gap penalty  ; mismatch penalty  pq. n Cost = sum of gap and mismatch penalties. 2  +  CA CGACCTACCT CTGACTACAT TGACCTACCT CTGACTACAT - T C C C  TC +  GT +  AG + 2  CA - Edit Distance

8 Goal: Given two strings X = x 1 x 2... x m and Y = y 1 y 2... y n find alignment of minimum cost. Def. An alignment M is a set of ordered pairs x i -y j such that each item occurs in at most one pair and no crossings. Def. The pair x i -y j and x i' -y j' cross if i j'. Ex: CTACCG vs. TACATG. Sol: M = x 2 -y 1, x 3 -y 2, x 4 -y 3, x 5 -y 4, x 6 -y 6. Sequence Alignment CTACC- TACAT- G G y1y1 y2y2 y3y3 y4y4 y5y5 y6y6 x2x2 x3x3 x4x4 x5x5 x1x1 x6x6

9 Sequence Alignment: Problem Structure Def. OPT(i, j) = min cost of aligning strings x 1 x 2... x i and y 1 y 2... y j. n Case 1: OPT matches x i -y j. – pay mismatch for x i -y j + min cost of aligning two strings x 1 x 2... x i-1 and y 1 y 2... y j-1 n Case 2a: OPT leaves x i unmatched. – pay gap for x i and min cost of aligning x 1 x 2... x i-1 and y 1 y 2... y j n Case 2b: OPT leaves y j unmatched. – pay gap for y j and min cost of aligning x 1 x 2... x i and y 1 y 2... y j-1

10 Sequence Alignment: Algorithm Analysis.  (mn) time and space. English words or sentences: m, n  10. Computational biology: m = n = 100, billions ops OK, but 10GB array? Sequence-Alignment(m, n, x 1 x 2...x m, y 1 y 2...y n, ,  ) { for i = 0 to m M[0, i] = i  for j = 0 to n M[j, 0] = j  for i = 1 to m for j = 1 to n M[i, j] = min(  [x i, y j ] + M[i-1, j-1],  + M[i-1, j],  + M[i, j-1]) return M[m, n] }

Shortest Paths

12 Shortest Paths Shortest path problem. Given a directed graph G = (V, E), with edge weights c vw, find shortest path from node s to node t. Ex. Nodes represent agents in a financial setting and c vw is cost of transaction in which we buy from agent v and sell immediately to w. s 3 t allow negative weights

13 Shortest Paths: Failed Attempts Dijkstra. Can fail if negative edge costs. Re-weighting. Adding a constant to every edge weight can fail. u t sv st

14 Shortest Paths: Negative Cost Cycles Negative cost cycle. Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple. st W c(W) <

15 Shortest Paths: Dynamic Programming Def. OPT(i, v) = length of shortest v-t path P using at most i edges. n Case 1: P uses at most i-1 edges. – OPT(i, v) = OPT(i-1, v) n Case 2: P uses exactly i edges. – if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges Remark. By previous observation, if no negative cycles, then OPT(n-1, v) = length of shortest v-t path.

16 Shortest Paths: Implementation Analysis.  (mn) time,  (n 2 ) space. Finding the shortest paths. Maintain a "successor" for each table entry. Shortest-Path(G, t) { foreach node v  V M[0, v]   M[0, t]  0 for i = 1 to n-1 foreach node v  V M[i, v]  M[i-1, v] foreach edge (v, w)  E M[i, v]  min { M[i, v], M[i-1, w] + c vw } }

17 Shortest Paths: Practical Improvements Practical improvements. n Maintain only one array M[v] = shortest v-t path that we have found so far. n No need to check edges of the form (v, w) unless M[w] changed in previous iteration. Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using  i edges. Overall impact. n Memory: O(m + n). n Running time: O(mn) worst case, but substantially faster in practice.

18 Bellman-Ford: Efficient Implementation Push-Based-Shortest-Path(G, s, t) { foreach node v  V { M[v]   successor[v]   } M[t] = 0 for i = 1 to n-1 { foreach node w  V { if (M[w] has been updated in previous iteration) { foreach node v such that (v, w)  E { if (M[v] > M[w] + c vw ) { M[v]  M[w] + c vw successor[v]  w } If no M[w] value changed in iteration i, stop. }

Segmented Least Squares

20 Segmented Least Squares Least squares. n Foundational problem in statistic and numerical analysis. n Given n points in the plane: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). n Find a line y = ax + b that minimizes the sum of the squared error: Solution. Calculus  min error is achieved when x y

21 Segmented Least Squares Segmented least squares. n Points lie roughly on a sequence of several line segments. n Given n points in the plane (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) with n x 1 < x 2 <... < x n, find a sequence of lines that minimizes f(x). Q. What's a reasonable choice for f(x) to balance accuracy and parsimony? x y goodness of fit number of lines

22 Segmented Least Squares Segmented least squares. n Points lie roughly on a sequence of several line segments. n Given n points in the plane (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) with n x 1 < x 2 <... < x n, find a sequence of lines that minimizes: – the sum of the sums of the squared errors E in each segment – the number of lines L n Tradeoff function: E + c L, for some constant c > 0. x y

23 Dynamic Programming: Multiway Choice Notation. n OPT(j) = minimum cost for points p 1, p i+1,..., p j. n e(i, j) = minimum sum of squares for points p i, p i+1,..., p j. To compute OPT(j): n Last segment uses points p i, p i+1,..., p j for some i. n Cost = e(i, j) + c + OPT(i-1).

24 Segmented Least Squares: Algorithm Running time. O(n 3 ). n Bottleneck = computing e(i, j) for O(n 2 ) pairs, O(n) per pair using previous formula. INPUT: n, p 1,…,p N, c Segmented-Least-Squares() { M[0] = 0 for j = 1 to n for i = 1 to j compute the least square error e ij for the segment p i,…, p j for j = 1 to n M[j] = min 1  i  j (e ij + c + M[i-1]) return M[n] } can be improved to O(n 2 ) by pre-computing various statistics