Jet Propagation and Mach-Cone Formation in (3+1)-dimensional Ideal Hydrodynamics Barbara Betz and Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio.

Slides:



Advertisements
Similar presentations
Conical Correlations in Heavy-Ion Collisions Barbara Betz Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri Phys. Rev. C 79,
Advertisements

Jet Propagation and Mach Cones in (3+1)d Ideal Hydrodynamics Barbara Betz, Miklos Gyulassy, Dirk Rischke, Horst Stöcker and Giorgio Torrieri.
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Multiparticle Correlations and Charged Jet Studies in p+p, d+Au, and Au+Au Collisions at  s NN =200 GeV. Michael L. Miller Yale University For the STAR.
Photon-Jet Correlations at RHIC Saskia Mioduszewski Texas A&M University 18 July, 2007.
Jet Tomography and Particle Correlations in Heavy-Ion Collisions Barbara Betz Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Probing Properties of the QCD Medium via Heavy Quark Induced Hadron Correlations Huan Zhong Huang Department of Physics and Astronomy University of California.
References to Study the New Matter. Study QGP in different Centrality Most Central events (highest multiplicity), e.g. top 5% central, i.e. 5% of the.
Motivation One of the major findings at the Relativistic Heavy Ion Collider (RHIC) is the suppression of the highly energetic particles which raises the.
Mach Cone Studies in (3+1)d Ideal Hydrodynamics Barbara Betz, Philip Rau, Dirk Rischke, Horst Stöcker, Giorgio Torrieri Institut für Theoretische Physik.
Hydrodynamical Study of Jet Energy Loss Barbara Betz Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main DPG - Frühjahrstagung.
Jet Propagation and Mach-Cone Formation in (3+1)-dimensional Ideal Hydrodynamics Barbara Betz Disputationsvortrag Johann Wolfgang Goethe-Universität Frankfurt.
Julia VelkovskaMoriond QCD, March 27, 2015 Geometry and Collective Behavior in Small Systems from PHENIX Julia Velkovska for the PHENIX Collaboration Moriond.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
High-p T spectra and correlations from Cu+Cu and Au+Au collisions in STAR Marco van Leeuwen, LBNL for the STAR collaboration.
Mach Cone Studies with 3D Hydrodynamics Barbara Betz Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main NCRH2007 Frankfurt,
Investigations on Jet Evolution in (3+1)d Ideal Hydrodynamics Barbara Betz, Dirk Rischke, Horst Stöcker, Giorgio Torrieri Institut für Theoretische Physik.
We distinguish two hadronization mechanisms:  Fragmentation Fragmentation builds on the idea of a single quark in the vacuum, it doesn’t consider many.
Understanding Jet Energy Loss with Angular Correlation Studies in PHENIX Ali Hanks for the PHENIX Collaboration 24 th Winter Workshop on Nuclear Dynamics.
Winter Workshop on Nuclear Dynamics, Feb 2011 Centrality dependence of number and transverse momentum correlations in Au+Au collisions at 200 GeV Monika.
Michael P. McCumber for the PHENIX Collaboration Quark Matter 2008 Jaipur, India 5 February 2008 The “Shoulder” and the “Ridge” in PHENIX: Medium Response.
Understanding Jet Energy Loss with Angular Correlation Studies in PHENIX Ali Hanks for the PHENIX Collaboration 24 th Winter Workshop on Nuclear Dynamics.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Hard Probes at RHIC Saskia Mioduszewski Texas A&M University Winter Workshop on Nuclear Dynamics 8 April, 2008.
Flow-Driven Conical Emission in Ultrarelativistic Heavy-Ion Collisions arXiv: Barbara Betz Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke,
Jana Bielcikova (Yale University) for the STAR Collaboration 23 rd Winter Workshop on Nuclear Dynamics February 12-18, 2007 Two-particle correlations with.
Jet Propagation and Mach-Cone Formation in (3+1)-dimensional Ideal Hydrodynamics Barbara Betz Thanks goes to: Miklos Gyulassy, Igor Mishustin, Jorge Noronha,
A derivation of the source term induced by a fast parton from the quark energy-momentum tensor Bryon Neufeld, LANL Winter Workshop on Nuclear Dynamics.
STAR Back-to-Back Di-Jet Triggered Multi-Hadron Correlations as Medium Probes in STAR Back-to-Back Di-Jet Triggered Multi-Hadron Correlations as Medium.
Interaction between jets and dense medium in heavy-ion collisions Rudolph C. Hwa University of Oregon TsingHua University, Beijing, China May 4, 2009.
Sonic Mach Cones Induced by Fast Partons in a Perturbative Quark-Gluon Plasma [1] Presented by Bryon Neufeld (of Duke University) on March 20 th 2008 in.
Heavy-Ion Cafe, 30/Jun/2007, TokyoShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Jet correlation and modification at RHIC and 3 particle correlation.
J. RuppertFocus talk on interactions between jets and medium #1 Focus talk on interactions between jets and medium Jörg Ruppert Nuclear Theory, Duke University.
1 A guide through pT landscale of di-hadron correlation Jiangyong Jia Stony Brook University EIC, 2007 and what can we learn about the partonic medium?
Photon-Jet Correlations at RHIC Saskia Mioduszewski Texas A&M University 19 June, 2007.
What’s Missing in our Current Picture from High p T Measurements at RHIC? Saskia Mioduszewski Texas A&M University 23 March, 2007.
Identified Particle Ratios at large p T in Au+Au collisions at  s NN = 200 GeV Matthew A. C. Lamont for the STAR Collaboration - Talk Outline - Physics.
Two Particle Correlations and Viscosity in Heavy Ion Collisions Monika Sharma for the Wayne State University STAR Collaboration Outline: Motivation Measurement.
1 Identified Di-hadron Correlation in Au+Au & PYTHIA Simulation Jiaxu Zuo Shanghai Institute of Applied Physics & BNL CCAST Beijing,
Conical Flow induced by Quenched QCD Jets Jorge Casalderrey-Solana, Edward Shuryak and Derek Teaney, hep- ph/ SUNY Stony Brook.
20-25 May 2007 The Berkeley School STAR Study of Jets with 2+1 multi-particle correlations Richard Hollis* for the STAR Collaboration * in close collaboration.
Jet Propagation and Mach Cones In (3+1)d Ideal Hydrodynamics Barbara Betz, Miklos Gyulassy, Dirk Rischke, Horst Stöcker and Giorgio Torrieri Quark Matter.
Three-Particle Azimuthal Correlations Jason Glyndwr Ulery 23 March 2007 High-pT Physics at LHC.
1 Olga Barannikova University of Illinois at Chicago LHC09, Prague Multi-hadron correlations at RHIC and LHC Olga Barannikova.
Background introduction Model introduction Analysis method Results and discussions Conclusions G.L. Ma, S. Zhang, YGM et al., Phys Lett B 641, 362 (2006)
Jet Propagation & Mach Cone Evolution in (3+1)d Ideal Hydrodynamics Barbara Betz, Miklos Gyulassy, Dirk Rischke, Horst Stöcker and Giorgio Torrieri 05.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 0 Study of the Quark Gluon Plasma with Hadronic Jets What:
1 Away-side Modification and Near-side Ridge Relative to Reaction Plane at 200 GeV Au+Au Collisions 第十届全国粒子物理学术会议 (南京) Apr. 28th, 2008 Aoqi Feng, Fuqiang.
Probing the properties of dense partonic matter at RHIC Y. Akiba (RIKEN) for PHENIX collaboration.
1 N. N. Ajitanand Nuclear Chemistry, SUNY Stony Brook 27 May 2008 AGS-RHIC Workshop 2008 Three Particle Correlations.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
PPG067 Physics Statements Michael P. McCumber and Barbara Jacak August + September, 2006.
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
Near-side  correlations of high-p t hadrons from STAR Jörn Putschke for the STAR collaboration Lawrence Berkeley National Laboratory Weisshorn (4505m),
1 Mach Cones in Quark Gluon Plasma Jorge Casalderrey-Solana Lawrence Berkeley Laboratory.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
The Art Poskanzer School 1. 2 Physics motivation To create and study QGP – a state of deconfined, thermalized quarks and gluons predicted by QCD at high.
Kirill Filimonov, ISMD 2002, Alushta 1 Kirill Filimonov Lawrence Berkeley National Laboratory Anisotropy and high p T hadrons in Au+Au collisions at RHIC.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
Jet-Medium Interactions from RHIC/STAR to LHC/ALICE Fuqiang Wang Purdue University What have been learnt at RHIC? What can be done at LHC?
1 High p T Hadron Correlation Rudolph C. Hwa University of Oregon Hard Probes 2006 Asilomar, CA, June 10, 2006 and No Correlation.
Jana Bielcikova (Yale)ISMD 2007, Berkeley1 Near-side di-hadron correlations at RHIC Jana Bielcikova (Yale University)
Toward a  +Jet Measurement in STAR Saskia Mioduszewski, for the STAR Collaboration Texas A&M University 1.
I. Correlations: PHOBOS Data, Flux Tubes and Causality II. Ridge: Transverse Flow, Blast Wave Long Range Correlations and Hydrodynamic Expansion Sean Gavin.
The near-side in STAR Christine Nattrass (Yale University) for the STAR Collaboration.
Experimental Studies of Quark Gluon Plasma at RHIC
Modification of Fragmentation Function in Strong Interacting Medium
Guo-Liang Ma Background introduction Model introduction
Presentation transcript:

Jet Propagation and Mach-Cone Formation in (3+1)-dimensional Ideal Hydrodynamics Barbara Betz and Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri Nucl. Phys. A 830, 777c (2009), arXiv:

206/17/10 JET Summer School Berkeley Barbara Betz Jet - Studies in HIC I Jet moving through dense matter, depositing its energy should eventually disappear Jet suppression: signal for creation of opaque matter (Quark-Gluon Plasma) STAR, Phys. Rev. Lett. 91 (2003) < p T trigger < 6 GeV/c p T assoc > 2 GeV/c Can energy lost by jets tell us something about medium properties? Trigger particle

306/17/10 JET Summer School Berkeley Barbara Betz Jet - Studies in HIC II STAR, Nucl. Phys. A 774, 129 (2006) 4 < p T trigger < 6 GeV/c 0.15 < p T assoc < 4 GeV/c Reflect interaction of jet with medium PHENIX, Phys. Rev. C 77, (2008) Au+Au / p+p = 200 GeV Generation of Mach cone pattern Redistribution of energy to lower p T - particles Re-appearance of the away-side for low and intermediate p T assoc Mach cone angle sensitive to EoS: H. Stöcker, Nucl. Phys. A 750, 121 (2005), J. Casalderrey-Solana et al. Nucl. Phys. A 774, 577 (2006)

406/17/10 JET Summer School Berkeley Barbara Betz Modelling of Jets in Hydro Jets can be modelled using hydrodynamics: STAR, Phys. Rev. Lett. 95, (2005) residue of energy and momentum given by the jet Medium created in a HIC can be described using hydrodynamics P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, (2007)  Conversion into particles Freeze-out:

5 L. Satarov et al, Phys. Lett. B 627, 64 (2005) Expanding Medium I Consider different jet paths b=0 Apply Glauber initial conditions and an ideal Gas EoS for massless gluons Focus on radial flow contribution Experimental results based on many events A. K. Chaudhuri, Phys. Rev. C 75, (2007), A. K. Chaudhuri, Phys. Rev. C 77, (2008) Two-particle correlation (T freeze-out < T crit = 130 MeV): represents near-side jet 06/17/10 JET Summer School Berkeley Barbara Betz Jet 150 E tot = 5 GeV dE/dt = 1 GeV/fm

6 Expanding Medium II E tot = 5 GeV broad away-side peak double peaked structure due to non-central jets T trig p T trig = 3.5 GeV PHENIX, Phys. Rev. C 77, (2008) 06/17/10 JET Summer School Berkeley Barbara Betz v jet =0.999 BB et al., arXiv:

7 Expanding Medium III 06/17/10 JET Summer School Berkeley Barbara Betz Comparing different deposition scenarios, one sees that „cone“ angle approximately the same for different deposition scenarios T assoc p T assoc = 2.0 GeV: No double-peaked structure for pure energy deposition scenario due to thermal smearking T trig p T trig = 3.5 GeV T assoc p T assoc = 3.0 GeV T assoc p T assoc = 2.0 GeV v jet =0.999 BB et al., arXiv:

8 Expanding Medium IV 06/17/10 JET Summer School Berkeley Barbara Betz Conical emission angle also appears for subsonic jets Not a Mach cone Considering a bottom quark (M=4.5 GeV), propagating at v jet < c s (on-shell energy-momentum deposition scenario) T assoc p T assoc = 2.0 GeV Cu+Cu: Similar away-side shoulder width, T assoc double-peak structure reappars for p T assoc = 3 GeV BB et al., arXiv:

906/17/10 JET Summer School Berkeley Barbara Betz Summary  „Conical“ signal can be created:  Observed „cone“ angle is quite insensitive of  Can be tested experimentally comparing hard-soft correlations induced by heavy-flavor tagged jets. by averaging over wakes created by jets in different events. There is a deflection of particles emitted due to collective transverse flow.  the energy-momentum deposition mechanism,  the jet velocity (for both supersonic and subsonic „jets“),  the system size.