17.05.2004 Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.

Slides:



Advertisements
Similar presentations
Neutrino Astroparticle Physics
Advertisements

The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
A High Energy Neutrino Astronomy from infancy to maturity LAUNCH Meeting Heidelberg Christian Spiering DESY A.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
High Energy Neutrino Astronomy a promising decade ahead Christian Spiering, Gran Sasso, October 2002.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
UHE Neutrino Astronomy Shigeru Yoshida Chiba University RESCEU 2003.
Neutrinos and Ultra-High Energy Cosmic Rays Dmitry Semikoz MPI, Munich & INR, Moscow in collaboration with F.Aharonian, O.Kalashev, V.Kuzmin, A.Neronov.
Recent Results Lutz Köpke University of Mainz, Germany July 31, 2003
Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford.
C. Spiering, Leeds, July 23, Entrance to the Promised Land after 40 Years !
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Recent Results Lutz Köpke University of Mainz, Germany July 31, 2003
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
IAU Sydney Per Olof Hulth Particle Astronomy from Antarctica Per Olof Hulth Stockholm University.
Neutrino Telescopes and Neutrinos from LHC Neutrino Telescopes and Neutrinos from LHC ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi,
Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Neutrinos as Cosmic Messengers in the Era of IceCube, ANTARES and KM3NeT Uli Katz ECAP / Univ. Erlangen Vulcano Workshop 2012 Frontier Objects.
RICE = “Radio Ice Cherenkov Experiment”
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Recent Results from Searches for Astrophysical Neutrinos with the IceCube Neutrino Telescope Alexander Kappes Seminar APC, Paris, June 14, 2013.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
Ultra-High Energy Neutrino Fluxes Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS  Neutrinos: A.
High Energy Neutrino Astronomy Christian Spiering DESY Zeuthen TAUP 2001.
Muon Vertical Depth Intensity Distribution at the South Pole with AMANDA-II Kimberly Moody 1 August 2003.
Particle Physics: Status and Perspectives Part 7: Neutrinos Manfred Jeitler.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
Study of the Atmospheric Muon and Neutrinos for the IceCube Observatory Ryan Birdsall Paolo Desiati, Patrick Berghaus,
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
PHY418 Particle Astrophysics
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Status of the Pierre Auger Observatory Aaron S. Chou Fermilab Fermilab Users’ Meeting June 3, 2003.
Icecube Neutrino Observatory at the South Pole Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration.
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
The CRTNT Project (Cosmic Ray & Tau Neutrino Telescope) --- sensitivity and prototype experiment Huihai He, IHEP, CAS On behalf of the CRTNT collaboration.
Mumbai, 8/26/2011 Lepton-Photon 2011 Tom Gaisser1 High energy neutrinos Review of results from IceCube (including IceTop), Antares, Baikal & ANITA.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
RICAP Tom Gaisser1 Astrophysical neutrino results --overview and comments (Neutrino telescope session tomorrow includes IceCube, Antares, Baikal-GVD,
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
Imaging the Neutrino Universe with AMANDA and IceCube
Discussion session: other (crazy
John Kelley for the IceCube Collaboration
Comparison Of High Energy Hadronic Interaction Models
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
MC studies of the KM3NeT physics performance Rezo Shanidze
Predictions of Ultra - High Energy Neutrino fluxes
Presentation transcript:

Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen Fragen der Astroteilchenphysik

Reso Shanidze 2 Layout The sources of high energy  The sources of high energy  - Bottom-up models: pp(  )   + X     e  e - Bottom-up models: pp(  )   + X     e  e  - Top-down models: Decays of WIMPs (Dark matter, SUSY, Topolocical defects) (Dark matter, SUSY, Topolocical defects) Models and bounds: Models and bounds: - Atmospheric, WB-bound, HE- from the Sun - Atmospheric, WB-bound, HE- from the Sun - Fluxes from AGN, GRB, … - Fluxes from AGN, GRB, … Current experimental limits Current experimental limits Future prospects Future prospects  Summary  Summary

Reso Shanidze 3 The Sources of High Energy The Sources of High Energy Weak decays: , K, …, charm hadrons: Weak decays: , K, …, charm hadrons:     (99.99 %)     (99.99 %) K    (63.4 %) K    (63.4 %)  e  4.9 %, 38.8%) - K e3 decay (K, K o )  e  4.9 %, 38.8%) - K e3 decay (K, K o )     4.9 %, 27.2%) - K  3 decay     4.9 %, 27.2%) - K  3 decay c   l l + X, l =e,  ( 10 %) c   l l + X, l =e,  ( 10 %)   e  e   e  e c ,K, K o )= 7.8, 3.7, 15.5 m, L=  c   =E/m c ,K, K o )= 7.8, 3.7, 15.5 m, L=  c   =E/m c  ( charm ) ~ 100  m c  ( charm ) ~ 100  m

Reso Shanidze 4 Neutrino Flux from pp and p  Neutrino Flux from pp and p  Learned, Mannheim, Annu.Rev.Nucl.Part.Sci. 50(2000), Learned, Mannheim, Annu.Rev.Nucl.Part.Sci. 50(2000),  The volume emissivity of produced   The volume emissivity of produced   Q  (pp) = ∫ n t c N  (d  pp (E ,E)/dE  )(dN/dE) dE d  pp (E  E) /dE    diff. Inclusive cross-section d  pp (E  E) /dE    diff. Inclusive cross-section dN/dE = N 0 E –s dE - diff. energy spectra of p(CR) dN/dE = N 0 E –s dE - diff. energy spectra of p(CR) Q  (pp) (E) – practically same energy spectra Q  (pp) (E) – practically same energy spectra Q (pp) ~ 1 Q  (pp) (4E ) ~ E -s Q (pp) ~ 1 Q  (pp) (4E ) ~ E -s d  /  dE  = ∫ Q dr over spatial extent of the source d  /  dE  = ∫ Q dr over spatial extent of the source

Reso Shanidze 5 Atmospheric flux CR spectra: dN/dE = a E - CR spectra: dN/dE = a E - =2.7 (knee ~ eV) =2.7 (knee ~ eV) Hydrogen(0,9) He(0.08), … Hydrogen(0,9) He(0.08), … p(He) + A   +X p(He) + A   +X   exp(- h/h 0 )  h 0 =8.4km   exp(- h/h 0 )  h 0 =8.4km Earth atmosphere : 1030 g/cm -2 Earth atmosphere : 1030 g/cm -2   A (  KA  116 (138) gm/ cm -2   A (  KA  116 (138) gm/ cm -2 Int./decay(GeV): 115(850) Int./decay(GeV): 115(850) change of 2.7  3.7 change of 2.7  3.7 Secant theta effect Secant theta effect

Reso Shanidze 6 Atmospheric  flux CR interaction and propagation: CR interaction and propagation: MC codes: AIRES, COSMOS, MOCCA, HEMAS, CORSIKA MC codes: AIRES, COSMOS, MOCCA, HEMAS, CORSIKA CORSICA physics models: CORSICA physics models: VENUS, QGSJET, DPMJET, VENUS, QGSJET, DPMJET, SYBILL, HDPM. SYBILL, HDPM. Experimental Data: Experimental Data: - Underground experiments: - Underground experiments: MACRO, Frejus, L3C, … MACRO, Frejus, L3C, … - NT data: - NT data: Baikal, AMANDA Baikal, AMANDA

Reso Shanidze 7 Prompt  flux p() + N  C + X p() + N  C + X C – charmed particles C – charmed particles M.Thunman et al., Astropart. Phys. 5(1996), 309 M.Thunman et al., Astropart. Phys. 5(1996), 309 (hep-ph/ ) (hep-ph/ )

Reso Shanidze 8 Waxman-Bahcal Bound: High energy from astrophysical sources Waxman-Bahcal Bound: High energy from astrophysical sources E.Waxman,J.Bahcall PRD, v59(1998), E.Waxman,J.Bahcall PRD, v59(1998), Based on observations of Fly‘s Eye and AGASABased on observations of Fly‘s Eye and AGASA Cosmological origin of CR above GeVCosmological origin of CR above GeV ( E.Waxman, astro-ph/ ) ( E.Waxman, astro-ph/ ) Cosmological distribution of CR sources:Cosmological distribution of CR sources: dN/dE ~ E -   2 dN/dE ~ E -   2 Energy production rate ~ 5x10 44 erg Mpc -3 yr -1Energy production rate ~ 5x10 44 erg Mpc -3 yr -1 E 2  < 2 x GeV/cm 2 s srE 2  < 2 x GeV/cm 2 s sr

Reso Shanidze 9 Cosmogenic (GZK) Flux Photopion production by Photopion production by UHECR (E>10 19 GeV) : UHECR (E>10 19 GeV) :  + p    N  n   + p    N  n  CMB : 2.7K, ~400  /cm 3, E ~ meV. CMB : 2.7K, ~400  /cm 3, E ~ meV. IR: 1-2  cm 3, E ~ eV. IR: 1-2  cm 3, E ~ eV. (T.Stanev, astro-ph/ ) (T.Stanev, astro-ph/ ) 

Reso Shanidze 10 High Energy from the Sun Sun as a standard - candle ? High Energy from the Sun Sun as a standard - candle ? G. Ingelman, M. Thunman Phys. Rev. D 54(1996), 4385 G. Ingelman, M. Thunman Phys. Rev. D 54(1996), 4385 Calculations with LUND MC: Calculations with LUND MC: PYTHIA(v5.7) /JETSET(7.4) PYTHIA(v5.7) /JETSET(7.4) CR flux: (aE - interaction With the Sun atmosphere Rate of  events integrated over the Sun solid angle. Rate of  events integrated over the Sun solid angle. for NT (E > 100 GeV): for NT (E > 100 GeV): 1 event /yr ~6x10 4 m 2 

Reso Shanidze 11 High Energy Detectors High Energy Detectors

Reso Shanidze 12 The Baikal NT First telescope First telescope 1.1 km depth 1.1 km depth NT-36, 96, 192 NT-36, 96, m

Reso Shanidze 13 Results from BAIKAL Results from BAIKAL 34 events of upward  34 events of upward  astro-ph/ astro-ph/ Search for bright cascades Search for bright cascades E -2, e     =1:1:1 E -2, e     =1:1:1 90% C.L. limit  E 2 : 90% C.L. limit  E 2 : 1.3x10 -6 cm -2 s -1 sr -1 GeV 1.3x10 -6 cm -2 s -1 sr -1 GeV

Reso Shanidze 14 AMANDA Detector Antarctic Muon And Neutrino Detector Array AMANDA Detector Antarctic Muon And Neutrino Detector Array AMANDA (ice): m B10 (97-99): 10 strings, 302 OM II (2000): 19 strings 677 OM

Reso Shanidze 15 AMANDA Results (  flux) AMANDA B10: 1977 AMANDA B10: 1977 measurement: measurement: Coverage - 2 Coverage - 2  ang. ~ 2 o -2.5 o  logE ~ < E < 1000 TeV 6 < E < 1000 TeV PRL 90(2003) PRL 90(2003) E -2, e     =1:1:1 E -2, e     =1:1:1 E 2 (E) < E 2 (E) < 8.4x10 -7 GeV /cm 2 s sr

Reso Shanidze 16 AMANDA Results (cascades) cascades: cascades: Coverage - 4 Coverage - 4  ang. ~ 30 o -40 o  logE ~ Astro-ph/ Astro-ph/ d, MC: 920 d 197 d, MC: 920 d 50 TeV<E<5 PeV 50 TeV<E<5 PeV E -2, e     =1:1:1 E -2, e     =1:1:1 E 2 (E) < E 2 (E) < 8.6x10 -7 GeV /cm 2 s sr

Reso Shanidze 17 Acoustic Detection of UHE Acoustic Detection of UHE Astro-ph/ Astro-ph/ SAUND detector: ~ 250 km2 (US Navy array) - only 7 used. SAUND detector: ~ 250 km2 (US Navy array) - only 7 used. ~1600 m undersea ~1600 m undersea 147 days of running (2002) 147 days of running (2002) Calibration, analysis Calibration, analysis -Energy, position -Energy, position - Rates, reconstraction - Rates, reconstraction

Reso Shanidze 18 IceCube 1400 m 2400 m AMANDA South Pole IceTop - 80 Strings PMT - Instrumented volume: 1 km 3 - Installation: ~ atm. per year

10/7/2003 C.Spiering, VLVNT Workshop Search for diffuse excess of extra-terrestrial high energy muon neutrinos  bound WB bound log E /GeV DUMANDFREJUSMACRO Muons in Amanda-B10 (1997)Expectation Amanda-II, 3 yearsExpectation IceCube, 3 years

Reso Shanidze 20 RICEAGASA Amanda, Baikal AUGER  Anita AABN 2012 km 3 EUSO Auger Salsa GLUE

Reso Shanidze 21 Sumary and Outlook High energy astronomy: High energy astronomy: Data from Baika(lake), AMANDA(ice) Data from Baika(lake), AMANDA(ice) New undersea NT: ANTARES, NESTOR New undersea NT: ANTARES, NESTOR Sensitivity to the cosmic diffuse flux Sensitivity to the cosmic diffuse flux NT on km3 scale: IceCube, KM3NeT NT on km3 scale: IceCube, KM3NeT Acoustic and other technique (RICE, ANITA, EUSO, GLUE) for UHE. Acoustic and other technique (RICE, ANITA, EUSO, GLUE) for UHE.