1 SGFR: Secure Groupware for First Responders Contact: A NISSC Sponsored Project C.

Slides:



Advertisements
Similar presentations
Push Technology Humie Leung Annabelle Huo. Introduction Push technology is a set of technologies used to send information to a client without the client.
Advertisements

Web security: SSL and TLS
SSH Operation and Techniques - © William Stearns 1 SSH Operation and Techniques The Swiss Army Knife of encryption tools…
1 Lecture 17: SSL/TLS history, architecture basic handshake session initiation/resumption key computation negotiating cipher suites application: SET.
Cryptography and Network Security
Secure Socket Layer.
Socket Layer Security. In this Presentation: need for web security SSL/TLS transport layer security protocols HTTPS secure shell (SSH)
7-1 Chapter 7 – Web Security Use your mentality Wake up to reality —From the song, "I've Got You under My Skin“ by Cole Porter.
An Introduction to Secure Sockets Layer (SSL). Overview Types of encryption SSL History Design Goals Protocol Problems Competing Technologies.
CCNA – Network Fundamentals
Make Secure Information Sharing (SIS) Easy and an Reality C. Edward Chow, PI Osama Khaleel Bill Kretschmer C. Edward Chow, PI Osama Khaleel Bill Kretschmer.
Secure Group communication for First Responders [SGFR] By Ganesh Godavari.
12/2/2003chow1 Network and System Support for Multi-Level Security C. Edward Chow Department of Computer Science University of Colorado At Colorado Springs.
Java Security Model Lab#1 I. Omaima Al-Matrafi. Safety features built into the JVM Type-safe reference casting Structured memory access (no pointer arithmetic)
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
Cryptography and Network Security Chapter 17
Secure Multicast (II) Xun Kang. Content Batch Update of Key Trees Reliable Group Rekeying Tree-based Group Diffie-Hellman Recent progress in Wired and.
K. Salah 1 Chapter 31 Security in the Internet. K. Salah 2 Figure 31.5 Position of TLS Transport Layer Security (TLS) was designed to provide security.
Secure Multicast Xun Kang. Content Why need secure Multicast? Secure Group Communications Using Key Graphs Batch Update of Key Trees Reliable Group Rekeying.
Towards Scalable and Reliable Secure Multicast Presenter: Yang Richard Yang Network Research Lab Department of Computer Sciences The University of Texas.
Secure Group Communications Using Key Graphs Chung Kei Wong, Member, IEEE, Mohamed Gouda Simon S. Lam, Fellow, IEEE Evgenia Gorelik Yuksel Ucar.
Secure Group communication for First Responders [SGFR] By Ganesh Godavari.
SSH : The Secure Shell By Rachana Maheswari CS265 Spring 2003.
TCP/IP Protocol Suite 1 Chapter 11 Upon completion you will be able to: User Datagram Protocol Be able to explain process-to-process communication Know.
Introduction to the Application Layer Computer Networks Computer Networks Spring 2012 Spring 2012.
1 DACAManet Proposer’s Workshop UCCS-Raytheon Terry Boult C. Edward Chow Department of Computer Science University of Colorado at Colorado Springs Leland.
Chapter 8 Web Security.
Lecture slides prepared for “Business Data Communications”, 7/e, by William Stallings and Tom Case, Chapter 8 “TCP/IP”.
Chapter 2, slide: 1 CS 372 – introduction to computer networks* Monday June 28 Announcements: r Lab 1 is due today r Lab 2 is posted today and is due next.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
SYSTEM ADMINISTRATION Chapter 13 Security Protocols.
CHAPTER 2 PCs on the Internet Suraya Alias. The TCP/IP Suite of Protocols Internet applications – client/server applications The client requested data.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter Two Application Layer Prepared by: Dr. Bahjat Qazzaz CS Dept. Sept
70-291: MCSE Guide to Managing a Microsoft Windows Server 2003 Network Chapter 3: TCP/IP Architecture.
Behzad Akbari Spring 2012 (These slides are based on lecture slides by Lawrie Brown)
What makes a network good? Ch 2.1: Principles of Network Apps 2: Application Layer1.
1 Section 10.9 Internet Security Association and Key Management Protocol ISAKMP.
Chow6/23/2003 sgfr1 SFGR: Secure Groupware for First Responder C. Edward Chow Chip Benight Ganesh Godavari.
Citrix MPS 3.0 Licensing Douglas A. Brown President
Fundamentals of Computer Networks ECE 478/578 Lecture #19: Transport Layer Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University.
ECE Prof. John A. Copeland fax Office: Klaus 3362.
Cryptography and Network Security (CS435) Part Fourteen (Web Security)
Web Security : Secure Socket Layer Secure Electronic Transaction.
Chapter 6-2 the TCP/IP Layers. The four layers of the TCP/IP model are listed in Table 6-2. The layers are The four layers of the TCP/IP model are listed.
Module 9: Fundamentals of Securing Network Communication.
Network access security methods Unit objective Explain the methods of ensuring network access security Explain methods of user authentication.
1 ITS-ZeeWave Meeting 2/26/2004 UCCS Chow C. Edward Chow Department of Computer Science University of Colorado at Colorado Springs C. Edward Chow Department.
Computer Networking From LANs to WANs: Hardware, Software, and Security Chapter 13 FTP and Telnet.
AFS/OSD Project R.Belloni, L.Giammarino, A.Maslennikov, G.Palumbo, H.Reuter, R.Toebbicke.
COMPUTER NETWORKS Hwajung Lee. Image Source:
SSH. 2 SSH – Secure Shell SSH is a cryptographic protocol – Implemented in software originally for remote login applications – One most popular software.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography CSS 329 Lecture 13:SSL.
Skype.
or call for office visit, or call Kathy Cheek,
Slides taken from: Computer Networking by Kurose and Ross
Working at a Small-to-Medium Business or ISP – Chapter 7
Client-Server Interaction
Working at a Small-to-Medium Business or ISP – Chapter 7
Chapter 2 Introduction Application Requirements VS. Transport Services
Working at a Small-to-Medium Business or ISP – Chapter 7
SFGR: Secure Groupware for First Responder
Computer Networks Protocols
Presentation transcript:

1 SGFR: Secure Groupware for First Responders Contact: A NISSC Sponsored Project C. Edward Chow (PI) Chip Benight (PI) Ganesh Godavari Department of Computer Science Part of this work is based on research sponsored by the Air Force Research Laboratory, under agreement number F it was sponsored by a NISSC summer 2003 grant.

2 Goal of SGFR SGFR: Secure Groupware for First Responder: The goal is to design a framework for enhancing groupware packages such as instant messenger and video conferencing tool, –with security through scalable group key management (Keystone from UT Austin), and secure model secure group policy management (Antigone from U. Michigan) –With stress level and tool usage effectiveness evaluation This is a joint project with Dr. Chip Benight of psychology department. The enhanced secured groupware will be tested in a field trial with City’s Emergency Response team.

3 SGFR Features Security Enhanced Groupware Instant messenger (JabberX) Group Communication Server Instant Messaging Server (Jabber) Psychology Evaluation Stress Level Tracking Effectiveness of Tool Usage (Keyboard/Mouse Event Tracking, History of Commands, Mistakes, Popup Quiz?) Group Key Managment Secure Group Rekeying system (Keystone)

4 SGFR System Architecture SGFR Client SGFR Group Key Server SGFR Instant Messenger Server Group key distribution Sign-in create/join chat groups Registration/authentication Encrypt/Decrypt msgs using group key

5 SGFR System Operation

6 Associate JabberX client with Keyserver and Jabber server Users login to the Jabber server If login successful, the client registers with the Keyserver. When a user creates/joins a group, the Keyserver gives a key to the client. When a user leaves the group, the Keyserver generates a new key for the remaining members of the group.

7 Output of the Keystone Server User ganesh joining group g1 User ayen joining group g1 First group key assigned to group Second group key assigned to group When a member joined

8 Packet captured by Ethereal Packet Sniffer Output of the Jabber server running on a machine Encrypted “Hello” Surrounded by tag

9 Keystone Registrar Setup Registrar Setup –R S: using SSL –S => R : registrar key K R, client list Secret key K R is called registrar key. Client list contains the identities and ID numbers of clients that does not contain access control information

10 Secure Keystone Client Request Client Registration –C R: using SSL –R => C: ID c, k c –R => S: { ID c, k c } K R Where K c is client individual key ID c is clients identity number

11 Request and Reply A request may contain operations to more than one group –Operations Join Leave Re-synchronize – C => S: {request} k c – S => C: {ack} k c, {ind.rekey} k c

12 Key Updates Keyserver distributes new keys using the rekey messages. Reliable key updates can be done using –TCP –Reliable multicast Transport protocol Key stone uses UDP over IP multicast for efficient rekey message delivery and Forward Error Correction technique

13 Re-synchronization FEC does not provide 100% reliability Solution 1 –Client request for retransmission of the lost rekey message Disadvantages –Inefficient when the number of lost rekey is large Solution 2 –Keystone provides resynchronization mechanism for clients to update their keys incase of message loss.

14 keyserver Keyserver.c:main() sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); sslCTX = sslInit(&sslInfo, 1); if (getSpec(servRec, f) != 0) {…in spec.c..} /* the specification file is processed */ setupKGraph(servRec); setupReqAddr(&(servRec->reqAddr)); // listen for requests for clients setupReqAddr(&(servRec->regReqAddr)); //listen for requests from registrar

15 Keystone Specification File // 1 group, group-oriented TCP, period 1.0, DES3, RSA global-parameters begin rekey-period: 1.0 encryption: DES3-CBC message-digest: MD5 signature-scheme: RSA key-file: serverkey.rsa request-port: register-port: key-tree-degree: 4 access-control: none end group g1 begin rekeying: GROUP-ORIENTED rekey-delivery: TCP-unicast end

16 Key Trees k1-9 k123k456k1k789k2k3k4k5k6k7k8 u2 u3u4u5u6u7u8u9u1 k9 (changed to k78) (changed to k1-8) [Wong et al. SIGCOMM ’98, Wallner et al. Internet Draft] {k78} k7 {k78} k8 {k1-8} k123 {k1-8} k456 {k1-8} k78

17 Registrar setup Registrar.c:main() /* connect to keyserver */ sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); sslCTX = sslInit(&sslInfo, 1); ssl = sslConnect(sslCTX, ksAddr.sk); /* receive register initialization from keyserver */ msg.size = sslRecv(ssl, msg.msg, msg.max); curr = msg.msg; curr += getMsgHdr(curr, &ver, &type, &size, &seq, &msgSPI, &msgVer); if (type != INIT_REGISTER) { /* error */ } if (sslRecvFile(ssl, cListFilename) != 0) { /* error */ } while (1) { : if (childProcess(sk, ksAddr.sk, regSA, indSA, sslCTX, seqToKS, lockFile, clientAuthInfo)!= 0) : }

18 Registrar Client Registration Registrar.c:childProcess() ssl = sslAccept(sslCTX, sk); if (cliAuthInfo != NULL) { if ((i = checkClientCert(ssl, cliAuthInfo)) < 0) { /* ERROR */} if (consRegToKS(indSA, seqToKS, &reg) != 0) { fprintf(stderr, "ERROR: registration to key server\n"); return -1; } /* sign and encrypt registration info with regSA */ putMsgSize(reg.msg, 0); if (signEncMsgSA(&reg, regSA) != 0) { return -1; }

19 Client Setup Protocol.c:initializeclient() sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); registerSSL(ksCtx, &sslInfo, &regAddr); registerSSL.c:registerSSL() sslCTX = sslInit(sslInfo, 1); ssl = sslConnect(sslCTX, regAddr->sk); Gchat.c:cmd_join() reqGroups(ksCtx, numGrps, grpName, request); –Where request can be “join”/”leave”/”resyn” getGroupKey(ksCtx, grpName, version)

20 SSL Initialization void * sslInit(SSLInfo *sslInfo, int verifyPeer) { /* SSL initialization */ SSLeay_add_ssl_algorithms(); SSL_load_error_strings(); if ((sslCTX = SSL_CTX_new(SSLv3_method())) == NULL) { ERR_print_errors_fp(stderr); return NULL; } : if (verifyPeer) { SSL_CTX_set_verify(sslCTX, SSL_VERIFY_PEER, NULL); } else { SSL_CTX_set_verify(sslCTX, SSL_VERIFY_NONE, NULL); } return ((void *) sslCTX); } /

21 SSL Server connection void * sslAccept(void *sslCTX_v, int sock) { /* begin of sslAccept() */ SSL_CTX *sslCTX = (SSL_CTX *) sslCTX_v; SSL *ssl; X509 *peerCert; if ((ssl = SSL_new(sslCTX)) == NULL) { fprintf(stderr, "ERROR: no ssl\n"); return NULL; } SSL_set_fd (ssl, sock); if (SSL_accept(ssl) == -1) { ERR_print_errors_fp(stderr); SSL_free(ssl); return NULL; } if (SSL_CTX_get_verify_mode(sslCTX) == SSL_VERIFY_PEER) { if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); SSL_free(ssl); return NULL; } } else { fprintf(stderr, "ERROR: ask for account and password\n"); return NULL; } return ((void *) ssl); }

22 SSL Client connection void * sslConnect(void *sslCTX_v, int sock) { /* begin of sslConnect() */ SSL_CTX *sslCTX = (SSL_CTX *) sslCTX_v; SSL *ssl; X509 *peerCert; if ((ssl = SSL_new (sslCTX)) == NULL) { fprintf(stderr, "ERROR: no ssl\n"); return NULL; } SSL_set_fd (ssl, sock); if (SSL_connect(ssl) == -1) { ERR_print_errors_fp(stderr); SSL_free(ssl); return NULL; } if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); SSL_free(ssl); return NULL; } return ((void *) ssl); }

23 Access Control List /* check client certificates */ /* return -1 if error or client not found */ int checkClientCert(void *ssl_v, ClientAuthInfo *cliAuthInfo) { SSL *ssl = (SSL *) ssl_v; X509 *peerCert; char peerName[256]; int i, peerNameSize; if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); return -1; } X509_NAME_oneline(X509_get_subject_name(peerCert), peerName, sizeof(peerName)); peerNameSize = strlen(peerName)+1; /* got the subject line so compare with the list u want to allow.*/ : return SUCCESS/FAILURE; } /* end of checkClientCert() */

24 Encryption CBF int EncryptString (char *in, char *out, unsigned char *key, int plainlen) { int cipherlen, tmplen; unsigned char iv[8] = {1,2,3,4,5,6,7,8}; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); EVP_EncryptInit(&ctx,EVP_bf_cbc(),key,iv); if (!EVP_EncryptUpdate(&ctx,out,&cipherlen,in,plainlen)) { return -1; } if (!EVP_EncryptFinal(&ctx,out+cipherlen,&tmplen)) { return -1; } cipherlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); return cipherlen; }

25 Decryption CBF int DecryptString(char *in, char *out, unsigned char *key, int cipherlen) { int plainlen, tmplen; unsigned char iv[8] = {1,2,3,4,5,6,7,8}; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); EVP_DecryptInit(&ctx,EVP_bf_cbc(),key,iv); if (!EVP_DecryptUpdate(&ctx,out,&plainlen,in,cipherlen)) { return -1; } if (!EVP_DecryptFinal(&ctx,out+plainlen,&tmplen)) { return -2; } plainlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); return plainlen; }

26 Testing Results RunsClient Registration Time (ms) Group Join Time (ms) Group Leave Time (ms) Avg/Run Table 1 time taken for client registration group join, group leave File sizeTime Taken (ms) 8.5K K K K Table 2 time taken for file transfer

27 Conclusion A secure group communication software package SGFR v.0 was developed. –Use Digital Certificate to authenticate client access. –Group keys are distributed when members join/leave or based on some time period. –Group key is used to encrypted the messages. –Enhance text-based chat with remote file download and remote display. Ported the SGFR v.0 to run on handheld devices include PDA running Linux and Sony PalmTop.

28 Future work Improve the file transfer capability using Reliable Multicast Transport Protocol. Improve Keystone’s error handling mechanism between keyserver/registrar and client manager. Improve Keystone client manager by moving it into socket layer and providing socket layer API between a client manager and data processor. Integrate with Wireless Sensor Networks and improve security of their operations.