Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.

Slides:



Advertisements
Similar presentations
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Putting Competing Orders in their Place near the Mott Transition Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Predrag Nikolic (Yale)
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Vortices in Classical Systems. Vortices in Superconductors  = B  da = n hc e*  e i  wavefunction Superconducting flux quantum e*=2e   = 20.7.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
The Three Hallmarks of Superconductivity
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Michael Browne 11/26/2007.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Frustrated Quantum Magnets in Strong Magnetic Fields F. Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Peter Abbamonte Brookhaven National Laboratory / SUNY Stony Brook Collaborators: Andrivo Rusydi, Brookhaven and U. Groningen Girsh Blumberg, Bell Laboratories.
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Next Generation Science with Inelastic X-ray Scattering
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Subir Sachdev Superfluids and their vortices Talk online:
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
July 2010, Nordita Assa Auerbach, Technion, Israel AA, Daniel P. Arovas and Sankalpa Ghosh, Phys. Rev. B74, 64511, (2006). G. Koren, Y. Mor, AA, and E.
Some open questions from this conference/workshop
Atomic Resolution Imaging
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Experimental Evidences on Spin-Charge Separation
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
The quantum mechanics of two dimensional superfluids
Presentation transcript:

Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and manipulating electron spins Spatially resolved spectral information on charge dynamics I will mention some state-of-the-art experiments and speculate on the future

YBa 2 Cu 3 O 6+x The spontaneous generation of flux at the tricrystal point occurs independent of the how the high-T c film is patterned. This is an image of an unpatterned YBCO film on a tricrystal substrate. There are 7 conventional Abrikosov vortices in the grains, 4 conventional Josephson vortices in the grain boundaries, and a half-quantum Josephson vortex as the tricrystal point. J.R. Kirtley, C.C. Tsuei, Martin Rupp, J.Z. Sun, Lock See Yu-Jahnes, A. Gupta, M.B. Ketchen, K.A. Moler, and M. Bhushan, Phys. Rev. Lett. 76,1336(1996). Resolving magnetic fields Flux quanta on the surface of a cuprate superconductor: evidence for d-wave pairing 10  m Future: higher atomic scale resolution ?

100Å b 7 pA 0 pA Vortex-induced LDOS modulations (≈ 4 lattice spacings) of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV at 4K J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Atomic scale resolution of “charge” Future: dynamic information from “noise” measurements ? Scanning tunneling microscopy

e-e- vortex The wavefunction of a vortex acquires a phase factor each time the vortex encircles a Cooper pair or an electron—this phase is responsible for the quantum interference effects. e-e- Vortices come in multiple flavors, with the number of flavors determined by the average density of electrons. The periodic density modulations at the core of each vortex are then an interference pattern between the different flavors of vortices, as they undergo quantum zero-point motion. L. Balents, L. Bartosch, A. Burkov. S. Sachdev, K. Sengupta, cond-mat/ Commercial break: novel many body effects in STM measurements

K. Kodama, M. Takigawa, M. Horvatic, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila, Science 298, 395 (2002). SrCu 2 (BO 3 ) 2 Magnetization plateau in a spin gap insulator Up spin bosons form a Mott insulator at rational filling Detecting and manipulating spins

SrCu 2 (BO 3 ) 2 Detecting and manipulating spins Nuclear magnetic resonance Future: moving spins around and measuring spin transport K. Kodama, M. Takigawa, M. Horvatic, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila, Science 298, 395 (2002).

J. M. Tranquada et al., Nature 429, 534 (2004) Neutron scattering High energy spin excitations in the cuprate superconductors Detecting and manipulating spins

Spallation Neutron Source, Oak Ridge, Tennessee (2006) Future: better resolution will help distinguish distinct quantum paramagnets (spin liquids) Detecting and manipulating spins

Resonant Soft X-ray Scattering (RSXS) P. Abbamonte, G. Blumberg, A. Rusydi, A. Gozar, P. G. Evans, T. Siegrist, L. Venema, H. Eisaki, E. D. Isaacs, & G. A. Sawatzky, Nature (2004). Sr 14 Cu 24 O 41 Detecting only the correlated electrons E=528.6 eV Future: Dynamic information rivaling that of neutron scattering

Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and manipulating electron spins Spatially resolved spectral information on charge dynamics Future: New experiments will illuminate subtle quantum correlations in many body states, yield new surprises, and keep theorists honest.