Hebel-Slicther Coherence Peak L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959). Type II Coherence Effects 1/T 1 Temperature TcTc Y. Masuda and.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
SPIN
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Institut für Plasmaforschung Universität Stuttgart Long-distance correlation of fluctuations under strong ExB shear in TJ-K P. Manz, M. Ramisch, U. Stroth.
Small-Angle Neutron Scattering & The Superconducting Vortex Lattice
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Pattern Formation Induced by Modulation Instability in Nonlinear Optical System Ming-Feng Shih( 石明豐 ) Department of Physics National Taiwan University.
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
6. LOW-TEMPERATURE PROPERTIES OF NON-CRYSTALLINE SOLIDS T > 1 K: other low-frequency excitations, “soft modes”, and the Soft-Potential Model.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Crystallographically Amorphous Ferrimagnetic Alloys: Comparing a Localized Atomistic Spin Model with Experiments MMM, Scottsdale, AZ Oct/Nov 2011 T. Ostler,
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
Neutron Skin of 208 Pb from Coherent Pion Photoproduction Crystal Ball detector Neutron Skin 208 Pb (γ, π 0 ) measurements Model-independent correlation.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Superconductivity Introduction Disorder & superconductivity : milestones BCS theory Anderson localization Abrikosov, Gorkov Anderson theorem
Superconducting properties in filled-skutterudite PrOs4Sb12
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Efficiency of thermal radiation energy-conversion nanodevices Miguel Rubi I. Latella A. Perez L. Lapas.
DAMAGE SPREADING PHASE TRANSITIONS IN A THEMAL ROUGHENING MODEL Yup Kim with C. K. Lee Kyung Hee Univ. Ref.: 1. Yup Kim and C. K. Lee, Phys. Rev E 62,
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Strontium Ruthenate Rachel Wooten Solid State II Elbio Dagotto
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Vortex Lattice Anisotropy in Magnesium Diboride Morten Ring Eskildsen Department of Physics University of Notre Dame.
Electron-Phonon Relaxation Time in Cuprates: Reproducing the Observed Temperature Behavior YPM 2015 Rukmani Bai 11 th March, 2015.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Magnetic and Electronic Quasiparticle Spectra of Iron Pnictides* E.C.Marino UFRJ Rio de Janeiro, Brazil *C.M.S da Conceição, M.B Silva Neto, E.C. Marino.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Measurement of Spin Coherence Times in Proton-Irradiated 4H-SiC
Superconductivity in Bismuth Oxide Compounds
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
II //II // \ Others Q.
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
Hiroyuki Nojiri, Department of Physics, Okayama University
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Hector H. García et al. Clin. Microbiol. Rev. 2002; doi: /CMR
Probing correlations by use of two-nucleon removal
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Hebel-Slicther Coherence Peak L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959). Type II Coherence Effects 1/T 1 Temperature TcTc Y. Masuda and A. G. Redfield Phys. Rev. 125, 159 (1962)

Absence of Type II Coherence Effects in Cuprates Y. Kitaoka, et al., J. Phys. Soc. Japan 57, 30 (1988) K. Holczer, et al., Phys. Rev. Lett. 67, 152 (1991) Reasons for absence of coherence effects in high-T c cuprates Gap anisotropy Spin fluctuations (not QPs) dominate spin relaxation Clean limit electrodynamics (suppresses “coherence peak”) N(E) E E ds The absence of “coherence effects” does not rule out a BCS-like description of the cuprates

R. E. Glover and M. Tinkham, Phys. Rev. 104, 844 (1956) D. M. Ginsburg and M. Tinkham, Phys. Rev. 118, 990 (1960) Type II Coherence Effects

L. H. Palmer and M. Tinkham, Phys. Rev. 165, 588 (1968)

Type I Coherence Effects Ultrasonic Attenuation R. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957)