Machinen Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 8&9: Image Segmentation Professor Heikki Kälviäinen Machine Vision.

Slides:



Advertisements
Similar presentations
Spatial Filtering (Chapter 3)
Advertisements

Chapter 3 Image Enhancement in the Spatial Domain.
Sliding Window Filters and Edge Detection Longin Jan Latecki Computer Graphics and Image Processing CIS 601 – Fall 2004.
Lecture 07 Segmentation Lecture 07 Segmentation Mata kuliah: T Computer Vision Tahun: 2010.
Content Based Image Retrieval
EE 7730 Image Segmentation.
Chapter 10 Image Segmentation.
Machine Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 6&7: Image Enhancement Professor Heikki Kälviäinen Machine Vision and.
EE663 Image Processing Edge Detection 2 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
Lappeenranta University of Technology (Finland)
1 Image Filtering Readings: Ch 5: 5.4, 5.5, 5.6,5.7.3, 5.8 (This lecture does not follow the book.) Images by Pawan SinhaPawan Sinha formal terminology.
Chapter 10 Image Segmentation.
The Segmentation Problem
Machinen Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 8&9: Image Segmentation Professor Heikki Kälviäinen Machine Vision.
Lectures 10&11: Representation and description
Image Segmentation Using Region Growing and Shrinking
Thresholding Thresholding is usually the first step in any segmentation approach We have talked about simple single value thresholding already Single value.
Edge Detection Hao Huy Tran Computer Graphics and Image Processing CIS 581 – Fall 2002 Professor: Dr. Longin Jan Latecki.
Chapter 10: Image Segmentation
What is Image Segmentation?
G52IIP, School of Computer Science, University of Nottingham 1 Edge Detection and Image Segmentation.
Lecture 16 Image Segmentation 1.The basic concepts of segmentation 2.Point, line, edge detection 3.Thresh holding 4.Region-based segmentation 5.Segmentation.
Digital Image Processing In The Name Of God Digital Image Processing Lecture8: Image Segmentation M. Ghelich Oghli By: M. Ghelich Oghli
University of Kurdistan Digital Image Processing (DIP) Lecturer: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture,
Chap. 9: Image Segmentation Jen-Chang Liu, Motivation Segmentation subdivides an image into its constituent regions or objects Example: 生物細胞在影像序列中的追蹤.
© by Yu Hen Hu 1 ECE533 Digital Image Processing Image Segmentation.
Introduction to Image Processing
Joonas Vanninen Antonio Palomino Alarcos.  One of the objectives of biomedical image analysis  The characteristics of the regions are examined later.
Digital Image Processing Lecture 18: Segmentation: Thresholding & Region-Based Prof. Charlene Tsai.
Chapter 10 Image Segmentation.
Chapter 10, Part II Edge Linking and Boundary Detection The methods discussed in the previous section yield pixels lying only on edges. This section.
G52IVG, School of Computer Science, University of Nottingham 1 Edge Detection and Image Segmentation.
Image Processing Segmentation 1.Process of partitioning a digital image into multiple segments (sets of pixels). 2. Clustering pixels into salient image.
Chapter 10, Part I.  Segmentation subdivides an image into its constituent regions or objects.  Image segmentation methods are generally based on two.
Chapter 10 Image Segmentation 國立雲林科技大學 電子工程系 張傳育 (Chuan-Yu Chang ) 博士 Office: ES 709 TEL: ext. 4337
Pixel Connectivity Pixel connectivity is a central concept of both edge- and region- based approaches to segmentation The notation of pixel connectivity.
Image Segmentation and Edge Detection Digital Image Processing Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth Sciences National Cheng.
CS654: Digital Image Analysis Lecture 24: Introduction to Image Segmentation: Edge Detection Slide credits: Derek Hoiem, Lana Lazebnik, Steve Seitz, David.
EE 4780 Edge Detection.
COMP322/S2000/L171 Robot Vision System Major Phases in Robot Vision Systems: A. Data (image) acquisition –Illumination, i.e. lighting consideration –Lenses,
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
主講者 : 陳建齊. Outline & Content 1. Introduction 2. Thresholding 3. Edge-based segmentation 4. Region-based segmentation 5. conclusion 2.
Digital Image Processing
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities May 2, 2005 Prof. Charlene Tsai.
Image Segmentation Prepared by:- Prof. T.R.Shah Mechatronics Engineering Department U.V.Patel College of Engineering, Ganpat Vidyanagar.
Lecture 04 Edge Detection Lecture 04 Edge Detection Mata kuliah: T Computer Vision Tahun: 2010.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Thresholding Foundation:. Thresholding In A: light objects in dark background To extract the objects: –Select a T that separates the objects from the.
Digital Image Processing
Digital Image Processing CSC331
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Unit-VII Image Segmentation.
Chapter 10: Image Segmentation The whole is equal to the sum of its parts. Euclid The whole is greater than the sum of its parts. Max Wertheimer.
1 Edge Operators a kind of filtering that leads to useful features.
Course : T Computer Vision
Digital Image Processing (DIP)
Machine Vision ENT 273 Lecture 4 Hema C.R.
Digital Image Processing (Digitaalinen kuvankäsittely) Exercise 5
Chapter 10 Image Segmentation
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
Image Segmentation.
Image Segmentation – Edge Detection
DICOM 11/21/2018.
ECE 692 – Advanced Topics in Computer Vision
Digital Image Processing
a kind of filtering that leads to useful features
a kind of filtering that leads to useful features
Image Segmentation Image analysis: First step:
Digital Image Processing
Image Filtering Readings: Ch 5: 5. 4, 5. 5, 5. 6, , 5
Image Segmentation Using Region Growing and Shrinking
Presentation transcript:

Machinen Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 8&9: Image Segmentation Professor Heikki Kälviäinen Machine Vision and Pattern Recognition Laboratory Department of Information Technology Faculty of Technology Management Lappeenranta University of Technology (LUT)

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Content Motivation. Detection of discontinuities. Edge linking and boundary detection. –Local processing. –Global processing: Hough Transform. Thresholding. Region-oriented segmentation. –Region growing. –Region splitting and merging. Motion-based segmentation.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Segmentation: Motivation To extract important details in an image for building a feature vector = feature extraction. Feature selection => feature extraction => feature vector. Challenging question: What details?

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Detection of discontinuities Point detection. Line detection. Edge detection. –Basic formulation. –Gradient operators. –Laplace operators. Combined detection.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Point detection Detection of isolated points: a) Apply the mask b) Threshold by using abs(R) > T where R is ∑w_i z_i (w_i mask, z_i point at location i)

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Line detection Directed filters (lines of one pixel thick): Horizontal +45 ° Vertical -45 °

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection Edge = The boundary between two regions with relatively distinct gray-level properties. First-order derivates (Gradient operators). Second-order derivates (Laplace operators). Approaches with several techniques.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: different kind of images

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: different kind of images (cont.) Images where almost each pixel belongs to edges.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: Gradient operators Gradient of f(x,y): G_x ∂f/∂x df == G_y ∂f/∂y Magnitude: mag(df)= ((G_x)^2 + (G_y)^2)^(-1/2) approximation df = abs(G_x) + abs (G_y) Direction: α(x,y) = tan^{-1} (G_y/G_x)

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Gradient operators Roberts: Prewitt: Sobel:

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: 3x3 Prewitt operator Horizontal mask (left top). Vertical mask (left bottom). Sum of the two masks (right middle).

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: Sobel and Prewitt operators Sobel operatorPrewitt operator

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Laplace operators Laplacian of a 2-D function (second derivate operator): d^2 f = ∂^2f/∂x^2 + ∂f^2/∂y^2 3 x 3 mask: d^2 f = 4 z_5 – (z_2 + z_4 + z_6 + z_8)

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Laplace operators (cont.) Sensitive to noise. Finding the location of edges using its zero-crossing property. Convolve an image with the Laplacian of 2-D Gaussian function of the form h(x,y) = exp(-(x^2+y^2)/2σ^2) where σ is the standard deviation. Let r^2 = x^2 + y^2: d^2 h = (r^2-σ^2)/σ^4 exp(-(r^2)/2σ^2) zero-crossings at r = ±σ

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Laplacian of Gaussian: Marr edge detection Convolution with a filter h(r) of ←  =1.5  =5.0 → zero-crossings

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge detection: comparisons ← Sobel Prewitt → ← Roberts Laplacian of Gaussian →

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Edge linking and boundary detection From intensity discontinuities to more general segmentation. –For example, from edge pixels to line segments. Local processing. –Analysis of a small neighborhood: Strength and direction of the gradient of edge pixels. Global processing: –Analysis of the whole image: Global relationships between pixels. –Hough Transform.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Thresholding: Foundation For example, to separate an object (objects) and background. One threshold: –Object point: f(x,y) > T. Two thresholds: –Object class1: T_1 < f(x,y) < T_2. –Object class2: f(x,y) > T_2. –Background: f(x,y) ≤ T_1.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Thresholding: Foundation (cont.) Operation. T = T[x, y, p(x,y), f(x,y)] where f(x,y) is the gray-level point of (x,y) p(x,y) denotes some local property of this point (e.g., the average gray-level of a neighborhood centered on (x,y)) A thresholded image is g(x,y) is defined as g(x,y) = 1 if f(x,y) > T 0 if f(x,y) ≤ T.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Threshold: Role of illumination An image f(x,y) is a product of a reflectance component r(x,y) and an illumination component i(x,y). Original image => suitable histogram to thresholding Original image + illumination changes => unsuitable histogram to thresholding Ready for illumination changes?

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Thresholding: Global and optimal How: –Simple global thresholding: just select T manually. –Optimal thresholding: optimally by probability densities (Gaussian) p(z) = exp(-(z-μ)^2 / (2σ^2)) / (√(2πσ)) where μ is the mean value and σ is the standard deviation Mixture probability density of two classes: p(z) = P_1 p_1(z) + P_2 p_2(z) where P_1 and P_2 are the a priori probabilities P_1 + P_2 = 1.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Thresholding: Global and optimal (cont.) The threshold value for which error is minimal P_1 p_1(T) = P_2 p_2(T) By solving the equation we will obtain T T = (μ_1 + μ_2)/2 + σ^2/((μ_1 - μ_2) ln(P_2/P_1) If P_1=P_2 the optimal threshold is the average of the means.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Region-oriented segmentation Region growing. –Bottom-up. –Pixel by pixel. –Pixel aggregation. Region splitting and merging. –Top-down. –Subdivisions of the image. –Split and merge.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Region growing Pixel aggregation: start with a set of seed points and from these grow regions by appending to each seed point those neighboring pixels that have similar properties (such as gray level, texture, color). Which seed points? Similar properties? Should the criterion be constant or change as a function of current pixels.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Region splitting and merging Subdivide an image initially into a set of arbitrary, disjointed regions and then merge and/or split the regions in an attempt to satisfy given conditions. Method using a logical predicate P(R) over the points in set R (similar values or not): 1.Split into four disjointed quadrants any region R_i where P(R_i) = FALSE. 2.Merge any adjacent regions R_j and R_k for which P(R_j U R_K) = TRUE. 3.Stop when no further merging or splitting is possible.

Machinen Vision and Dig. Image Analysis Prof. Heikki Kälviäinen CT50A Summary Image acquisition => digital image ↓ Preprocessing => better image ↓ Segmentation => features for classification/clustering.