1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.

Slides:



Advertisements
Similar presentations
Black Holes. Underlying principles of General Relativity The Equivalence Principle No difference between a steady acceleration and a gravitational field.
Advertisements

Supernovae and nucleosynthesis of elements > Fe Death of low-mass star: White Dwarf White dwarfs are the remaining cores once fusion stops Electron degeneracy.
9A Black Holes and Neutron Stars Dead Stars Copyright – A. Hobart.
Copyright © 2009 Pearson Education, Inc. Chapter 13 The Bizarre Stellar Graveyard.
Chapter 18: Relativity and Black Holes
Stellar Deaths II Neutron Stars and Black Holes 17.
Neutron Stars and Black Holes Please press “1” to test your transmitter.
Copyright © 2010 Pearson Education, Inc. Chapter 13 Black Holes.
1. black hole - region of space where the pull of gravity is so great that even light cannot escape. Possible end of a very massive star.
Black Holes. Outline Escape velocity Definition of a black hole Sizes of black holes Effects on space and time Tidal forces Making black holes Evaporation.
Neutron Stars and Black Holes
Neutron Stars and Black Holes Chapter 14. The preceding chapters have traced the story of stars from their birth as clouds of gas in the interstellar.
The mass of a neutron star cannot exceed about 3 solar masses. If a core remnant is more massive than that, nothing will stop its collapse, and it will.
Black Holes - Chapter 22.
13 Black Holes and Neutron Stars Dead Stars Copyright – A. Hobart.
How do we transform between accelerated frames? Consider Newton’s first and second laws: m i is the measure of the inertia of an object – its resistance.
Review for Test #3 April 16 Topics: Measuring the Stars The Interstellar medium Stellar Evolution and Stellar Death Gamma Ray Bursts Neutron stars, pulsars.
Apparent Brightness α Luminosity/Distance^2
Review for Test #3 Sunday 3-5 PM Topics: The Sun Stars (including our Sun) The Interstellar medium Stellar Evolution and Stellar Death for Low mass, medium.
Chapter 22: Black Holes Einstein’s relativity: –Special –General –Relativity and black holes Evidence of black holes Properties of black holes Long-time.
This set of slides This set of slides continues the late-in-life evolution and death of massive stars, stars > 8 solar masses. It starts with Special and.
Black Holes Astronomy 315 Professor Lee Carkner Lecture 16.
Escape Velocity Velocity needed to escape the gravitational pull of an object. 2GM R vesc = Escape velocity from Earth's surface is 11 km/sec. If Earth.
Question The pressure that prevents the gravitational collapse of white dwarfs is a result of ______.  A) Conservation of energy  B) Conservation of.
Spectral Classes Strange lettering scheme is a historical accident. Spectral Class Surface Temperature Examples OBAFGKMOBAFGKM 30,000 K 20,000 K 10,000.
The general theory of relativity is our most accurate description of gravitation Published by Einstein in 1915, this is a theory of gravity A massive object.
Clicker Question: The age of a cluster can be found by: A: Looking at its velocity through the galaxy. B: Determining the turnoff point from the main sequence.
Black Holes By Irina Plaks. What is a black hole? A black hole is a region in spacetime where the gravitational field is so strong that nothing, not even.
13.3 Black Holes: Gravity’s Ultimate Victory Our Goals for Learning What is a black hole? What would it be like to visit a black hole? Do black holes really.
Black Holes.
Neutron Stars and Black Holes Chapter 14. Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse beyond.
Stationary Elevator with gravity: Ball is accelerated down.
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Chapter 13 Black Holes. What do you think? Are black holes just holes in space? What is at the surface of a black hole? What power or force enables black.
Binary star motion demonstration What does the first demo represent? What will happen if I replace one ball with a smaller ball? What does the second model.
Copyright © 2010 Pearson Education, Inc. Neutron Stars and Black Holes Unit 9.
Black Holes. Gravity is not a force – it is the curvature of space-time - Objects try and move in a straight line. When space is curved, they appear to.
A black hole is a region of space with such a strong gravitational field that not even light can escape.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
General Relativity Principle of equivalence: There is no experiment that will discern the difference between the effect of gravity and the effect of.
BLACK HOLES. WHAT IS A BLACK HOLE? A few definitions from the dictionary: Region of space resulting from the collapse of a star Region of space with strong.
Black Holes Formation Spacetime Curved spacetime Event horizon Seeing black holes Demo: 1L Gravity Well - Black Hole.
Lecture 27: Black Holes. Stellar Corpses: white dwarfs white dwarfs  collapsed cores of low-mass stars  supported by electron degeneracy  white dwarf.
Death of Stars III Physics 113 Goderya Chapter(s): 14 Learning Outcomes:
The Bizarre Stellar Graveyard. The Mass of Stellar Corpses White Dwarf Solar Masses, Degeneracy pressure overwhelmed, Plasma becomes neutrons.
Historical SN and their properties Total energy released ~10 54 erg in a few hours.
Pulsars, Neutron Stars and Black Holes Model of a Neutron Star.
Copyright © 2010 Pearson Education, Inc. Chapter 13 Neutron Stars and Black Holes Lecture Outline.
It was discovered in the early 1990’s that the pulse period of a millisecond pulsar 500 parsecs from earth varies in a regular way.
Neutron Stars & Black Holes (Chapter 11) APOD. Student Learning Objective Indentify properties of Neutron Stars & Black Holes NASA.
Universe Tenth Edition
Chapter 13 Neutron Stars and Black Holes. Optical, Infrared and X-ray Image of Cassiopeia A.
ASTR 113 – 003 Spring 2006 Lecture 08 March 22, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
Black Holes. Escape Velocity The minimum velocity needed to leave the vicinity of a body without ever being pulled back by the body’s gravity is the escape.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 13 Neutron Stars and Black Holes.
Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Neutron Stars and Black Holes Chapter 13 Clickers.
Black Holes A stellar mass black hole accreting material from a companion star 1.
© 2010 Pearson Education, Inc. The Bizarre Stellar Graveyard.
Black Holes and Gravity 1)Type II Supernova 2)Neutron Stars 3)Black Holes 4)More Gravity April 7, 2003
Black Holes A stellar mass black hole accreting material from a companion star 1.
DESCRIBE EINSTEIN'S THEORY OF RELATIVITY Objective:
© 2017 Pearson Education, Inc.
A neutron star over the Sandias?
It was discovered in the early 1990’s that the pulse period of a millisecond pulsar 500 parsecs from earth varies in a regular way.
Neutron Stars and Black Holes
Relativity H7: General relativity.
Black Holes - Chapter 21.
Exam 3 average: 65%. You will have all of class time on Thursday to do the group review. The response “Exams” will be on Learning Suite by Wed noon. They.
Chapter 13 Neutron Stars and Black Holes
Final states of a star: 1. White Dwarf
Presentation transcript:

1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If initial mass > 8 M Sun and < 25 M Sun. 3. Black Hole If initial mass > 25 M Sun. Final States of a Star

Pulsars are incredibly accurate clocks! Example: period of the first discovered "millisecond pulsar" is: P = sec It is slowing down at a rate of x sec/sec The slowing-down rate is slowing down at a rate of: 0.98 x /sec

Pulsar Exotica Binary pulsars: two pulsars in orbit around each other. Einstein predicted that binary orbits should "decay", i.e. the masses would spiral in towards each other, losing energy through "gravitational radiation". Confirmed by binary pulsar. year Curve: prediction of decaying orbit. Points: measurements. Planets around pulsars: A pulsar was found in 1992 to have three planets! Masses about 3 M Earth, 1 M Earth, and 1 M Moon ! Millisecond pulsars: periods of 1 to a few msec. Probably accreted matter from a binary companion that made it spin faster. Gamma-ray Bursts: some pulsars produce bursts of gamma-rays, called Soft Gamma-Ray Repeaters or SGRs

Black Holes A stellar mass black hole accreting material from a companion star 4

Black Holes and General Relativity The Equivalence Principle Let's go through the following series of thought experiments and arguments: 1) Imagine you are far from any source of gravity, in free space, weightless. If you shine a light or throw a ball, it will move in a straight line. General Relativity: Einstein's description of gravity (extension of Newton's). Published in It begins with: 5

2. If you are in freefall, you are also weightless. Einstein says these are equivalent. So in freefall, the light and the ball also travel in straight lines. 3. Now imagine two people in freefall on Earth, passing a ball back and forth. From their perspective, they pass the ball in a straight line. From a stationary perspective, the ball follows a curved path. So will a flashlight beam, but curvature of light path is small because light is fast (but not infinitely so). The different perspectives are called frames of reference. 6

4. Gravity and acceleration are equivalent. An apple falling in Earth's gravity is the same as one falling in an elevator accelerating upwards, in free space. 5. All effects you would observe by being in an accelerated frame of reference you would also observe when under the influence of gravity. 7

Examples: 1) Bending of light. If light travels in straight lines in free space, then gravity causes light to follow curved paths. 8

Observed! In 1919 eclipse by Eddington 9

Gravitational lensing of a single background quasar into 4 objects the “cloverleaf” quasar A ‘quad’ lens 10

Gravitational lensing. The gravity of a foreground cluster of galaxies distorts the images of background galaxies into arc shapes. 11

Saturn-mass black hole 12

2. Gravitational Redshift Consider accelerating elevator in free space (no gravity). time zero, speed=0 later, speed > 0 light received when elevator receding at some speed. light emitted when elevator at rest. Received light has longer wavelength (or shorter frequency) because of Doppler Shift ("redshift"). Gravity must have same effect! Verified in Pound-Rebka experiment. 13

3. Gravitational Time Dilation A photon moving upwards in gravity is redshifted. Since  1T1T the photon's period gets longer. Observer 1 will measure a longer period than Observer 2. So they disagree on time intervals. Observer 1 would say that Observer 2's clock runs slow! 1 2 All these effects are unnoticeable in our daily experience! They are tiny in Earth’s gravity, but large in a black hole’s. 14

Escape Velocity Velocity needed to escape the gravitational pull of an object. v esc = 2GM R Escape velocity from Earth's surface is 11 km/sec. If Earth were crushed down to 1 cm size, escape velocity would be speed of light. Then nothing, including light, could escape Earth. This special radius, for a particular object, is called the Schwarzschild Radius, R S. R S  M. 15

Black Holes If core with about 3 M Sun or more collapses, not even neutron pressure can stop it (total mass of star about 25 M Sun ). Core collapses to a point, a "singularity". Gravity is so strong that nothing can escape, not even light => black hole. Schwarzschild radius for Earth is 1 cm. For a 3 M Sun object, it’s 9 km. 16

Event horizon: imaginary sphere around object with radius equal to Schwarzschild radius. Event horizon Schwarzschild Radius Anything crossing over to inside the event horizon, including light, is trapped. We can know nothing more about it after it does so. 17

Like a rubber sheet, but in three dimensions, curvature dictates how all objects, including light, move when close to a mass. Black hole achieves this by severely curving space. According to Einstein's General Relativity, all masses curve space. Gravity and space curvature are equivalent. 18

Curvature at event horizon is so great that space "folds in on itself", i.e. anything crossing it is trapped. 19

Approaching a Black Hole: 20

Circling a Black Hole at the Photon Sphere: 21

Effects around Black Holes 1) Enormous tidal forces. 2) Gravitational redshift. Example, blue light emitted just outside event horizon may appear red to distant observer. 3) Time dilation. Clock just outside event horizon appears to run slow to a distant observer. At event horizon, clock appears to stop. 22

Black Holes have no Hair Properties of a black hole: - Mass - Spin (angular momentum) - Charge (tends to be zero) 23

Black Holes can have impact on their environments 24

Do Black Holes Really Exist? Good Candidate: Cygnus X-1 - Binary system: 30 M Sun star with unseen companion. - Binary orbit => companion > 7 M Sun. - X-rays => million degree gas falling into black hole. 25

Supermassive (3 million solar mass) Black Hole at the Galactic Center 26