Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for.

Slides:



Advertisements
Similar presentations
Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for.
Advertisements

Mapping with Known Poses
Probabilistic Robotics
Probabilistic Robotics
Probabilistic Robotics
Probabilistic Robotics SLAM. 2 Given: The robot’s controls Observations of nearby features Estimate: Map of features Path of the robot The SLAM Problem.
The GraphSLAM Algorithm Daniel Holman CS 5391: AI Robotics March 12, 2014.
IR Lab, 16th Oct 2007 Zeyn Saigol
Probabilistic Robotics
Simultaneous Localization and Mapping
SA-1 Probabilistic Robotics Tutorial AAAI-2000 Sebastian Thrun Computer Science and Robotics Carnegie Mellon University.
Bayesian Robot Programming & Probabilistic Robotics Pavel Petrovič Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics
Active Contours / Planes Sebastian Thrun, Gary Bradski, Daniel Russakoff Stanford CS223B Computer Vision Some slides.
Bayes Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics TexPoint fonts used in EMF. Read the.
Probabilistic Robotics: Kalman Filters
Probabilistic Control of Human Robot Interaction: Experiments with a Robotic Assistant for Nursing Homes Joelle Pineau Michael Montemerlo Martha Pollack.
Challenges Bayesian Estimation for Autonomous Object Manipulation Based on Tactile Perception Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, Andrew.
Robotic Mapping: A Survey Sebastian Thrun, 2002 Presentation by David Black-Schaffer and Kristof Richmond.
Sebastian Thrun Carnegie Mellon University Statistical Learning in Robotics State-of-the-Art, Challenges and Opportunities.
1 Distributed localization of networked cameras Stanislav Funiak Carlos Guestrin Carnegie Mellon University Mark Paskin Stanford University Rahul Sukthankar.
© sebastian thrun, CMU, CS226 Statistical Techniques In Robotics Monte Carlo Localization Sebastian Thrun (Instructor) and Josh Bao (TA)
Probabilistic Robotics
Part 3 of 3: Beliefs in Probabilistic Robotics. References and Sources of Figures Part 1: Stuart Russell and Peter Norvig, Artificial Intelligence, 2.
Stanford CS223B Computer Vision, Winter 2005 Lecture 13: Learning Large Environment Models Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik.
Sebastian Thrun Carnegie Mellon University University of Pittsburgh Particle Filters In Robotics or: How the World Became To Be One Big Bayes Network.
SLAM: Simultaneous Localization and Mapping: Part I Chang Young Kim These slides are based on: Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox, MIT.
Stanford CS223B Computer Vision, Winter 2005 Lecture 12: Filters / Motion Tracking Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp.
Probabilistic Robotics
Stanford CS223B Computer Vision, Winter 2006 Lecture 12 Filters / Motion Tracking 2 Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg.
Part 2 of 3: Bayesian Network and Dynamic Bayesian Network.
SA-1 Probabilistic Robotics Mapping with Known Poses.
Stanford CS223B Computer Vision, Winter 2007 Lecture 12 Tracking Motion Professors Sebastian Thrun and Jana Košecká CAs: Vaibhav Vaish and David Stavens.
Stanford CS223B Computer Vision, Winter 2006 Lecture 11 Filters / Motion Tracking Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg.
SLAM: Simultaneous Localization and Mapping: Part II BY TIM BAILEY AND HUGH DURRANT-WHYTE Presented by Chang Young Kim These slides are based on: Probabilistic.
HCI / CprE / ComS 575: Computational Perception
ROBOT MAPPING AND EKF SLAM
Itamar Kahn, Thomas Lin, Yuval Mazor
Markov Localization & Bayes Filtering
Localization and Mapping (3)
Efficient Approaches to Mapping with Rao- Blackwellized Particle Filters Department of Computer Science University of Freiburg, Germany Wolfram Burgard.
9-1 SA-1 Probabilistic Robotics: SLAM = Simultaneous Localization and Mapping Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti,
SA-1 Mapping with Known Poses Ch 4.2 and Ch 9. 2 Why Mapping? Learning maps is one of the fundamental problems in mobile robotics Maps allow robots to.
Probabilistic Robotics: Monte Carlo Localization
ECGR4161/5196 – July 26, 2011 Read Chapter 5 Exam 2 contents: Labs 0, 1, 2, 3, 4, 6 Homework 1, 2, 3, 4, 5 Book Chapters 1, 2, 3, 4, 5 All class notes.
Stochastic Gradient Descent and Tree Parameterizations in SLAM
Young Ki Baik, Computer Vision Lab.
Towards robotic assistants in nursing homes: challenges and results Joelle Pineau Michael Montemerlo Martha Pollack * Nicholas Roy Sebastian Thrun Carnegie.
Robot Mapping Short Introduction to Particle Filters and Monte Carlo Localization.
City College of New York 1 Dr. Jizhong Xiao Department of Electrical Engineering City College of New York Advanced Mobile Robotics.
CSE-473 Mobile Robot Mapping. Mapping with Raw Odometry.
CSE-473 Project 2 Monte Carlo Localization. Localization as state estimation.
HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev
Probabilistic Robotics
Sebastian Thrun Michael Montemerlo
Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University.
10-1 Probabilistic Robotics: FastSLAM Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,
SLAM Techniques -Venkata satya jayanth Vuddagiri 1.
Mobile Robotics. Fundamental Idea: Robot Pose 2D world (floor plan) 3 DOF Very simple model—the difficulty is in autonomy.
Marginalization and sliding window estimation
CSE-473 Mobile Robot Mapping.
Probabilistic Robotics Graph SLAM
Robótica Móvil CC5316 Clase 16: SLAM
Simultaneous Localization and Mapping
Probabilistic Robotics: Historgam Localization
Particle Filter/Monte Carlo Localization
CARNEGIE MELLON UNIVERSITY
Introduction to Robot Mapping
Probabilistic Robotics
Simultaneous Localization and Mapping
Probabilistic Robotics Bayes Filter Implementations FastSLAM
Presentation transcript:

Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for Mobile Robot Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Based on the paper A Real-Time Algorithm for Mobile Robot Mapping With Applications to Multi-Robot and 3D Mapping Best paper award at 2000 IEEE International Conference on Robotics and Automation (~1,100 submissions) Sponsored by DARPA (TMR-J.Blitch, MARS-D.Gage, MICA-S.Heise) and NSF (ITR(2), CAREER-E.Glinert, IIS-V.Lumelsky) Other contributors: Yufeng Liu, Rosemary Emery, Deepayan Charkrabarti, Frank Dellaert, Michael Montemerlo, Reid Simmons, Hugh Durrant-Whyte, Somajyoti Majnuder, Nick Roy, Joelle Pineau, …

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems 3D Mapping with EM Real Time Hybrid Expectation Maximization SLAM (Kalman filters) Motivation

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Museum Tour-Guide Robots With: Greg Armstrong, Michael Beetz, Maren Benewitz, Wolfram Burgard, Armin Cremers, Frank Dellaert, Dieter Fox, Dirk Haenel, Chuck Rosenberg, Nicholas Roy, Jamie Schulte, Dirk Schulz

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Nursebot Initiative With: Greg Armstrong, Greg Baltus, Jacqueline Dunbar- Jacob, Jennifer Goetz, Sara Kiesler, Judith Matthews, Colleen McCarthy, Michael Montemerlo, Joelle Pineau, Martha Pollack, Nicholas Roy, Jamie Schulte

Sebastian Thrun, Carnegie Mellon, IJCAI-2001

Mapping: The Problem n Concurrent Mapping and Localization (CML) n Simultaneous Localization and Mapping (SLAM)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping: The Problem n Continuous variables n High-dimensional (eg, 1,000,000+ dimensions) n Multiple sources of noise n Simulation not acceptable

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Milestone Approaches Mataric 1990 Kuipers et al 1991 Elfes/Moravec 1986 Lu/Milios/Gutmann 1997

Sebastian Thrun, Carnegie Mellon, IJCAI D Mapping Konolige et al, 2001Teller et al, 2000 Moravec et al, 2000

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Take-Home Message Mapping is the holy grail in mobile robotics. Every state-of-the-art mapping algorithm is probabilistic.

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems 3D Mapping with EM Real Time Hybrid Expectation Maximization Motivation SLAM (Kalman filters)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Bayes Filters Special cases: HMMs DBNs POMDPs Kalman filters Condensation... x = state t = time z = measurement u = control  = constant

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Bayes Filters in Localization [Simmons/Koenig 95] [Kaelbling et al 96] [Burgard, Fox, et al 96]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Bayes Filters for Mapping s = robot pose m = map t = time  = constant z = measurement u = control Mapping? Localization:

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Kalman Filters (SLAM) [Smith, Self, Cheeseman, 1990]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping with SLAM Courtesy of Hugh Durrant-Whyte, Univ of Sydney

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Large-Scale SLAM Mapping Courtesy of John Leonard, MIT

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 SLAM: Limitations n Linear n Scaling: O(N 4 ) in number of features in map n Can’t solve data association problem

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Motivation Open Problems 3D Mapping with EM Real Time Hybrid SLAM (Kalman filters) Expectation Maximization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Unknown Data Association: EM M-Step: Mapping with known posesE-Step: Localization [Dempster et al, 77] [Thrun et al, 1998] [Shatkay/Kaelbling 1997]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 CMU’s Wean Hall (80 x 25 meters) 15 landmarks 16 landmarks 17 landmarks27 landmarks

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 EM Mapping, Example (width 45 m)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 EM Mapping: Limitations n Local Minima n Not Real-Time

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Motivation SLAM (Kalman filters) Open Problems 3D Mapping with EM Expectation Maximization Real Time Hybrid

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Goal EM: data association Not real-time Kalman filters: real-time No data association ? ?

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Real-Time Approximation (ICRA paper)   Incremental ML

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Incremental ML: Not A Good Idea path robot mismatch

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Real-Time Approximation   Our ICRA Paper

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Real-Time Approximation Yellow flashes: artificially distorted map (30 deg, 50 cm)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Importance of Posterior Pose Estimate Without pose posteriorWith pose posterior

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Online Mapping with Posterior Courtesy of Kurt Konolige, SRI, DARPA-TMR [Gutmann & Konolige, 00]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 CAD map Accuracy: “The Tech” Museum, San Jose 2D Map, learned

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Multi-Robot Mapping n Every module maximizes likelihood n Pre-aligned scans are passed up in hierarchy map Cascaded architecture map …… Aligned map Pre-aligned scans

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Multi-Robot Exploration DARPA TMR Maryland 7/00DARPA TMR Texas 7/99 (July. Texas. No air conditioning. Req to dress up. Rattlesnakes)

Sebastian Thrun, Carnegie Mellon, IJCAI D Volumetric Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI D Structure Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI D Texture Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Fine-Grained Structure: Can We Do Better?

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Motivation SLAM (Kalman filters) Expectation Maximization Open Problems Real Time Hybrid 3D Mapping with EM

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Multi-Planar 3D Mapping Idea: Exploit fact that buildings posses many planar surfaces n Compact models n High Accuracy n Objects instead of pixels

Sebastian Thrun, Carnegie Mellon, IJCAI D Multi-Plane Mapping Problem Entails five problems –Generative model with priors: Not all of the world is planar –Parameter estimation: Location and angle of planar surfaces unknown –Outlier identification: Not all measurements correspond to planar surfaces (other objects, noise) –Correspondence: Different measurements correspond to different planar surfaces –Model selection: Number of planar surfaces unknown

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Expected Log-Likelihood Function [Liu et al, ICML-01]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 EM To The Rescue! ** ****

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Results With EM (95% of data explained by 7 surfaces) Without EM With: Deepayan Chakrabarti, Rosemary Emery, Yufeng Liu, Wolfram Burgard, ICML-01 error

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Obvious Next Step EM for object mapping EM for concurrent localization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping (with University of Sydney) With: Hugh Durrant-Whyte, Somajyoti Majunder, Marc de Battista, Steve Scheding

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Motivation SLAM (Kalman filters) Expectation Maximization Real Time Hybrid 3D Mapping with EM Open Problems

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Take-Home Message Mapping is the holy grail in mobile robotics. Every state-of-the-art mapping algorithm is probabilistic. Sebastian has one cool animation!

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems n 2D Indoor mapping and exploration n 3D mapping (real-time, multi-robot) n Object mapping (desks, chairs, doors, …) n Outdoors, underwater, planetary n Dynamic environments (people, retail stores) n Full posterior with data association (real-time, optimal)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems, con’t n Mapping, localization n Control/Planning under uncertainty n Integration of symbolic making n Human robot interaction Literature Pointers: n “Robotic Mapping” at n “Probabilistic Robotics” AI Magazine 21(4)

Sebastian Thrun, Carnegie Mellon, IJCAI