2006.10.13 HYP2006 Mainz Quark-model baryon-baryon interactions and their applications to few-body systems Y. Fujiwara ( Kyoto) Y. Suzuki ( Niigata ) C.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
Three-nucleon force effects in proton- deuteron scattering Souichi Ishikawa (Hosei University) FB19, Aug Sep. 5, Bonn.
fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
Scalar  and  interaction within a chiral unitary approach HYP2006, Mainz,13 th Oct 2006 Kenji Sasaki E. Oset M. J. Vicente Vacas (Valencia University.
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Pornrad Srisawad Department of Physics, Naresuan University, Thailand Yu-Ming Zheng China Institute of Atomic Energy, Beijing China Azimuthal distributions.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Hypernucleus In A Two Frequency Model Yiharn Tzeng, S.Y.Tsay Tzeng, T.T.S.Kuo.
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Munich, June 16th, 2010Exotic gifts of nature1 XIV International Conference on Hadron Spectroscopy J. Vijande University of Valencia (Spain) A. Valcarce,
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Bled workshop  -core potentials for light nuclei derived from the quark-model baryon-baryon interaction Y. Fujiwara ( Kyoto) M. Kohno ( Kyushu.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hyperon mixing in neutron star matter and universal many-body repulsion 2014/12/1 JPARC Y. Yamamoto Collaborators: T. Furumoto N. Yasutake Th.A. Rijken.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Aye Aye Min, Khin Swe Myint, J. Esmaili & Yoshinori AKAISHI August 23, 2011 By Theoretical Investigation for Production of Double-  Hypernuclei from Stopped.
Neutron Star Strucure from the Quark-Model Baryon-Baryon Interaction Kenji Fukukawa (RCNP, Osaka) Collaborator: M. Baldo, G. F. Burgio, and H.-J. Schulze.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Important role of three-body repulsive force effect in nuclear reactions Takenori FURUMOTO (Osaka City Univ. ) 19th International IUPAP Conference on Few-Body.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
A closer look to the H dibaryon Teresa Fernández Caramés (U. Salamanca) poster2.jpg [T.F.C and A. Valcarce, Physical Review C 85, (2012)]
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
Study of microscopic complex potentials for nuclear scattering reaction Takenori Furumoto (Ichinoseki National College of Technology) YIPQS International.
H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J
The Strong Force: NN Interaction
The role of isospin symmetry in medium-mass N ~ Z nuclei
Tensor optimized shell model and role of pion in finite nuclei
Structure and dynamics from the time-dependent Hartree-Fock model
Structure of few-body light Λ hypernuclei
Hyperon mixing and universal many-body repulsion in neutron stars
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Chiral Nuclear Forces with Delta Degrees of Freedom
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
The Structure of Nuclear force in a chiral quark-diquark model
Kernfysica: quarks, nucleonen en kernen
Nuclear excitations in relativistic nuclear models
Nuclear Forces - Lecture 2 -
Daisuke ABE Department of Physics, University of Tokyo
d*, a quark model perspective
Three- and four-body structure of hypernuclei
Charmonium spectroscopy above thresholds
AN EXPLANATION OF THE D5/2-(1930) AS A rD BOUND STATE
Presentation transcript:

HYP2006 Mainz Quark-model baryon-baryon interactions and their applications to few-body systems Y. Fujiwara ( Kyoto) Y. Suzuki ( Niigata ) C. Nakamoto (Suzuka) M. Kohno ( Kyushu Dental ) K. Miyagawa ( Okayama) M. Kohno ( Kyushu Dental ) K. Miyagawa ( Okayama) 1. Introduction 2. B 8 B 8 interactions fss2 and FSS: spin-flavor SU 6 symmetry 3. B 8  interactions by quark-model G-matrix 4. Some applications 4.1.  N interaction and 3  H Faddeev calculation 4.2 effective  potential and 9  Be Faddeev calculation 4.3.  s. p. potential and  ,  (3N) potentials 4.4.  N total cross sections and  potential 5. Summary

HYP2006 Mainz B 8 B 8 interactions by fss2 A natural and accurate description of NN, YN, YY interactions in terms of ( 3 q)-( 3 q) RGM Short-range repulsion and LS by quarks Medium-attraction and long-rang tensor by S, PS and V FSS meson exchange potentials (fss2) (Cf. FSS without V) Model Hamiltonian + (U ij Conf +U ij FB +∑ β U ij Sβ +∑ β U ij PSβ + ∑ β U ij Vβ ) 6 i<j ∑ 6 i =1 ∑ H = (m i +p i 2 /2m i ) +  (3 q )  (3 q )| E-H| A {  (3 q )  (3 q )  ( r )}  =0 Phys. Rev. C64 (2001) Phys. Rev. C65 (2002) Phys. Rev. C54 (1996) 2180 QMPACK homepage QMPACK homepage PPNP in press Oka – Yazaki (1980)  Arndt : SAID Nijmegen : NN-OnLine

Lippmann-Schwinger (LS) RGM Solve [  - H 0 - V RGM (  ) ]  =0 with V RGM (  )=V D +G+  K in the mom. representation (  = E - E int ) Born kernel  q f |V RGM (  ) |q i   T-matrix, G-matrix 3-cluster Faddeev formalism using 3-cluster Faddeev formalism using V RGM (  ) P.T.P. 103 (2000) 755 1) non-local 2) energy-dependent 3) Pauli-forbidden states in  N -  N (I=1/2),  -  N -  (I=0),  -  (I=1/2) 1 S 0 : i.e. SU 3 (11) s P.T.P. 107 (2002) 745; 993 self-consistency equation for   : Ku=u

HYP2006 Mainz B 8  interaction by quark-model G-matrix G (p, p’; K, , k F ) G (k’, q’; q 1, q’) V (k, q) V (p f, p i ) Wigner transform V W (R, q) : Wigner transform U(R)=V W (R,  (h 2 /2  )(E-U(R)) Transcendental equation Schrödinger equation Lippmann - Schwinger equation exact E B,  (E) E B W,  W (E) k’=p’- p, q’=(p+p’)/2 k=p f - p i, q=(p f +p i )/2  - cluster folding B8B8B8B8  : “ (0s) 4 ” =0.257 fm -2 incident q 1 relative q’ in total c. m. k F =1.35 fm -1 q 1 =q for direct and knock-on k=k’

HYP2006 Mainz n  RGM by G-matrix of fss2 q 1 =0 q’=  3/5 k F k F =1.35 fm -1 exp “constant K, , k F ” S 1/2 P 3/2 P 1/2 n  sactt. phase shift

B 8 B 8 systems classified in the SU 3 states with (,  ) [ ‐ (11) a +(30)] [(11) a +(30)] (03) [(11) s +3(22)] [3(11) s ‐( 22 ) ] (22)    ‐3‐3 ― (11) a [ ‐ (11) a + (30)+(03)] [(30) ‐ (03)] ― [2(11) a + (30)+(03)] ― (11) s + (22)+ (00) (11) s ‐ (22)+ (00) (11) s + (22) ー (11) s + (22) (11) s - (22) - (00) ― (22)        (30) ― (22)   [ ‐ (11) a +(03)] [(11) a +(03)] (30) [(11) s +3(22)] [3(11) s ‐ (22)] (22)    ‐1‐1 (03) ― (22) NN(0) NN(1) 3 E, 1 O ( P =antisymmetric) 1 E, 3 O ( P =symmetric)B 8 B 8 (I)S (11) s complete Pauli forbidden (30) almost forbidden (  =2/9) ‐2‐2 0 ‐4‐4

Spin-flavor SU 6 symmetry 1. Quark-model Hamiltonian is approximately SU 3 scalar (assumption) ・ no confinement contribution (assumption) ・ Fermi-Breit int. … quark-mass dependence only ・ EMEP … automatic SU 3 relations for coupling constants phenomenologyCf. OBEP: exp data  g, f,  … (integrated) phenomenology Cf. OBEP: exp data  g, f,  … (integrated) 2.  -on plays an important role through SU 3 relations and FSB m 3. effect of the flavor symm. breaking (FSB) by m s >m ud, B, M masses Characteristics of SU 3 channels 1 S, 3 P ( P -symmetric) 3 S, 1 P ( P -antisymmetric) pp (22) attractive pp np (03) strongly attractive np  N(I=1/2) (11) s strongly repulsive  N(I=1/2)  N(I=3/2) (30) strongly repulsive  N(I=3/2) (00) strongly attractive H-particle channel H-particle channel  N(I=0) (11) a weakly attractive  N(I=0) “only this part is ambiguous” “only this part is ambiguous”

(22) S=0 S= ‐ 2 S= ‐ 3 S= ‐ 4 S= ‐ 1 1S01S01S01S0 1 S 0 phase shifts for B 8 B 8 interactions with the pure (22) state (fss2)

(03) (30) (11) a NN (03) central only (no  tensor) NN  (3/2)  N (0)  (0)  N (3/2) 3S13S13S13S1 fss2 3 S 1 phase shifts (30) : Pauli repulsion (11)a : weakly attractive

 + p differential cross sections and  + p,  p asymmetries a(  ) a exp =0.44±0.2 at p  =800±200 MeV/c Kadowaki et al. (KEK-PS E452) Euro. Phys. J. A15 (2002) 295 Ahnet al.(KEK-PS E251, E289) Ahn et al. (KEK-PS E251, E289) NP A648(1999)263, A761(2005) MeV/c  p lab  750 MeV/c Kurosawa et al. (KEK-PS E452B) KEK preprint (2006) reported by K. Nakai  + p elastic  p elastic +p+p

HYP2006 Mainz  N interaction by fss2 fss2 FSS from  3 He Faddeev  P-wave  N is weakly attractive N -  Ncoupling : 3 S D 1 by one-  tensor  N -  N coupling : 3 S D 1 by one-  tensor 1 P P 1 by FB LS ( - ) 1 P P 1 by FB LS ( - ) Backward/Forward ratio

HYP2006 Mainz 3  H (hypertriton) u d u u d d p n u d s Λ(∑ 0 ) ~2 fm ~5 fm “ deute ron ”  d = 2.22 MeV B Λ =130 ±50 keV  N on-shell properties are directly reflected fss2 289 keV 0.80 FSS 878 keV 1.36  NN = – = - 1.66  d |= – = - 2.22 (MeV) 150 channel calculation P  (%) 1 S 0 / 3 S 1 relative strength close to NSC89 exp’t Phys. Rev. C70, (2004)  NN-  NN CC Faddeev

HYP2006 Mainz  N 1 S 0 and 3 S 1 effective range parameters  N 1 S 0 and 3 S 1 effective range parameters modela s (fm) r s (fm) a t (fm) r t (fm) B  (keV)P  (%) FSS - - fss2 - - NSC89 - - “fss2” - - “fss2”: m  c 2 = 936 MeV  1,000 MeV Effect of the higher partial waves is large – 90 – 60 keV – vs. 20 – 30 keV in NSC89 favorable for  4 H (1 + ) B Λ exp =130 ±50 keV B  (keV)fss2“fss2” 6 ch (S) 15 ch (SD) 102 ch (J  4) 150 ch (J  6)

 effective local potentials by G-matrix B 8 B 8 interaction ND effective potentials quark-model  N-  N E B (exact) - - 3.62 MeV - - 3.18 MeV E B exp =3.12  0.02 MeV ‐‐ Cf. U  (0) = ‐ 46 (FSS), ‐ 48 (fss2) MeV in symmetric matter

HYP2006 Mainz (0) (3.04 MeV)  0.02 MeV 3067(3) keV 3024(3) keV  0.04 MeV 3026 keV 92 keV 1/2 + 5/2 + 3/2 + 8 Be  +  5 He  9 Be calc. 43  5  E exp (3/ /2 + ) = 43  5 keV Akikawa, Tamura et al. (BNL E930) Phys. Rev. Let. 88, (2002) 198 keV (fss2 quark+  ), 137 keV (FSS) : 3  5 times too large 9  Be 2  Faddeev for 9  Be  + + + +  RGM kernel (MN3R) effective  pot. (SB u=0.98) exp’t 2828 keV Phys. Rev. C70, , (2004) s splitting by  N LS Born kernel s splitting by  N LS Born kernel

HYP2006 Mainz s 9  Beby2  Faddeev using quark-model G-matrix  LS Born kernel s splitting of 9  Be by 2  Faddeev using quark-model G-matrix  LS Born kernel  0.5   0  0  N Born k F (fm -1 ) G-matrix S  ( MeV fm 5 ) fss2 (cont) ‐ 10.5 ‐ 10.6 ‐ FSS (cont) Faddeev  E (keV) fss2 (cont) FSS (cont)  E exp (keV) 43  5 FSS (cont) reproduces  E exp at k F =1.25 fm -1 ! P-wave  N-  N coupling by LS (-) is important. S-meson LS in fss2 is not favorable.

HYP2006 Mainz  potentials (V W C (R, 0)) by quark-model G-matrix interaction I=3/2 I=1/2 total fss2FSS The Pauli repulsion of  N(I=3/2) 3 S 1 is very strong.

HYP2006 Mainz  (3N) potentials by quark-model G-matrix interaction ( 0 +, T=1/2 channel) E B (exact) =- 3.79 MeV E B (exact) =- 5.70 MeV FSS fss2 consistent with 4  He (0 + ) resonance (3N): (0s) 3 =0.22 fm -2 =0.22 fm -2 q 1 =0

(  -, K + ) inclusive spectra on 28 Si exp: Noumi et al. PRL 89, (2002) ; 90, (E) (2003) Saha et al. Phys. Rev. C70, (2004) Saha et al. Phys. Rev. C70, (2004) poster session by M. Kohno Repulsive U  (q) in symmetric nuclear matter is experimentally confirmed.

 potentials (V W C (R, 0)) by quark-model G-matrix interaction I=1 I=0 I=1 total I=0 Some attraction in the surface region. FSS fss2

FSSfss2   -  (in medium) = 30.7±6.7 mb (eikonal approx.)= 20.9±4.5 mb   - p /   - n =1.1 at p lab =550 MeV/c Tamagawa et al. (BNL-E906) Nucl. Phys. A691 (2001) 234c Nucl. Phys. A691 (2001) 234c Yamamoto et al. Prog. Theor. Phys. 106 (2001)363 Prog. Theor. Phys. 106 (2001)363 Ahn et al. Phys. Lett. B 633 (2006) 214     More experiments are needed.

HYP2006 Mainz Summ ary Quark-model description for the baryon-baryon interaction is very successful to reproduce many experimental data. In particular, the extension of the (3q)-(3q) RGM study for the NN and YN interactions to the strangeness S= - 2, - 3, - 4 sectors has clarified characteristic features of the B 8 B 8 interactions. The results seem to be reasonable if we consider 1) spin-flavor SU 6 symmetry 2) weak π-on effect in the strangeness sector 3) effect of the flavor symmetry breaking 3) effect of the flavor symmetry breaking We have analyzed B 8 , B 8 (3N) interactions based on the G-matrix calculations of fss2 and FSS.

S=0 ・ triton binding energy … fss2: +150 keV (3 body force?) S = ‐ 1  p and  + p interactions are progressively known. ・  + p total and differential cross sections and polarization … fss2, FSS ・  N 1 S 0 and 3 S 1 attraction (relative strength) ( 3  H Faddeev calculation: 289 keV for fss2) ・ small s splitting in 9  Be excited states (FSS) ・  N (I=1/2 1 S 0 ),  N (I=3/2 3 S 1 ) repulsion  repulsive s. p. and  potentials … fss2, FSS S = ‐ 2  interaction is not much attractive ! ・  interaction |V  |<|V  N |<|V NN |  B   1 MeV (Nagara event 6  He) … fss2 ・  N in-medium total cross section (fss2, FSS) … strong isospin dependence of  s.p. potential ・  N (I=0 3 S 1 ): (11) a  0 or weakly attractive (fss2, FSS) vs. ESC04(d): strongly attractive Characteristics of fss2 and FSS