1 A Distributed and Efficient Flooding Scheme Using 1- Hop Information in Mobile Ad Hoc Networks Department of Computer Science and Information Engineering.

Slides:



Advertisements
Similar presentations
ECE /24/2005 A Survey on Position-Based Routing in Mobile Ad-Hoc Networks Alok Sabherwal.
Advertisements

1 K-clustering in Wireless Ad Hoc Networks Fernandess and Malkhi Hebrew University of Jerusalem Presented by: Ashish Deopura.
1 Location-Aided Routing (LAR) in Mobile Ad Hoc Networks Young-Bae Ko and Nitin H. Vaidya Yu-Ta Chen 2006 Advanced Wireless Network.
Ranveer Chandra , Kenneth P. Birman Department of Computer Science
MANETs Routing Dr. Raad S. Al-Qassas Department of Computer Science PSUT
A Mobile Infrastructure Based VANET Routing Protocol in the Urban Environment School of Electronics Engineering and Computer Science, PKU, Beijing, China.
Enhanced Gateway Multipoint Relays for Constructing a Small Connected Dominating Set in Wireless Ad Hoc Networks Ou Liang, Ahmet Sekercioglu.
1 On Constructing k- Connected k-Dominating Set in Wireless Networks Department of Computer Science and Information Engineering National Cheng Kung University,
Interference Considerations for QoS in MANETs Rajarshi Gupta, John Musacchio, Jean Walrand {guptar, musacchj, University of California,
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
Wireless Broadcasting with Optimized Transmission Efficiency Jehn-Ruey Jiang and Yung-Liang Lai National Central University, Taiwan.
1 Minimum-energy broadcasting in multi-hop wireless networks using a single broadcast tree Department of Computer Science and Information Engineering National.
CPSC 689: Discrete Algorithms for Mobile and Wireless Systems Spring 2009 Prof. Jennifer Welch.
Effects of Applying Mobility Localization on Source Routing Algorithms for Mobile Ad Hoc Network Hridesh Rajan presented by Metin Tekkalmaz.
1 Multicast Routing with Minimum Energy Cost in Ad hoc Wireless Networks Xiaohua Jia, Deying Li and Frankie Hung Dept of Computer Science, City Univ of.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
Muhammad Mahmudul Islam Ronald Pose Carlo Kopp School of Computer Science & Software Engineering Monash University, Australia.
On the Construction of Energy- Efficient Broadcast Tree with Hitch-hiking in Wireless Networks Source: 2004 International Performance Computing and Communications.
1 Efficient Retrieval of User Contents in MANETs Marco Fiore, Claudio Casetti, Carla-Fabiana Chiasserini Dipartimento di Elettronica, Politecnico di Torino,
1 TTS: A Two-Tiered Scheduling Algorithm for Effective Energy Conservation in Wireless Sensor Networks Nurcan Tezcan & Wenye Wang Department of Electrical.
Ad Hoc Networking Course Instructor: Carlos Pomalaza-Ráez Geographical Routing Using Partial Information for Wireless Ad Hoc Networks Rahul Jain, Anuj.
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
CPSC 689: Discrete Algorithms for Mobile and Wireless Systems Spring 2009 Prof. Jennifer Welch.
Connected Dominating Sets in Wireless Networks My T. Thai Dept of Comp & Info Sci & Engineering University of Florida June 20, 2006.
Tree-Based Double-Covered Broadcast for Wireless Ad Hoc Networks Weisheng Si, Roksana Boreli Anirban Mahanti, Albert Zomaya.
Itrat Rasool Quadri ST ID COE-543 Wireless and Mobile Networks
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2007 (TPDS 2007)
Efficient Gathering of Correlated Data in Sensor Networks
A novel gossip-based sensing coverage algorithm for dense wireless sensor networks Vinh Tran-Quang a, Takumi Miyoshi a,b a Graduate School of Engineering,
Message-Optimal Connected Dominating Sets in Mobile Ad Hoc Networks Paper By: Khaled M. Alzoubi, Peng-Jun Wan, Ophir Frieder Presenter: Ke Gao Instructor:
Presented by Fei Huang Virginia Tech April 4, 2007.
+ Mayukha Bairy Disk Intersection graphs and CDS as a backbone in wireless ad hoc networks.
Carlos Rodrigo Aponte OLSRv2 High Level Overview.
ENERGY-EFFICIENT FORWARDING STRATEGIES FOR GEOGRAPHIC ROUTING in LOSSY WIRELESS SENSOR NETWORKS Presented by Prasad D. Karnik.
Salah A. Aly,Moustafa Youssef, Hager S. Darwish,Mahmoud Zidan Distributed Flooding-based Storage Algorithms for Large-Scale Wireless Sensor Networks Communications,
Muhammad Mahmudul Islam Ronald Pose Carlo Kopp School of Computer Science & Software Engineering Monash University, Australia.
Load-Balancing Routing in Multichannel Hybrid Wireless Networks With Single Network Interface So, J.; Vaidya, N. H.; Vehicular Technology, IEEE Transactions.
Efficient Backbone Construction Methods in MANETs Using Directional Antennas 1 Shuhui Yang, 1 Jie Wu, 2 Fei Dai 1 Department of Computer Science and Engineering.
Connected Dominating Sets. Motivation for Constructing CDS.
On Reducing Broadcast Redundancy in Wireless Ad Hoc Network Author: Wei Lou, Student Member, IEEE, and Jie Wu, Senior Member, IEEE From IEEE transactions.
/ 22 1 A Distributed and Efficient Flooding Scheme Using 1-hop Information in Mobile Ad Hoc Networks Hai Liu Xiaohua Jia Peng-Jun Wan Dept. of Comput.
A Distributed and Efficient Flooding Scheme Using 1-Hop Information in Mobile Ad Hoc Networks IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.
GPSR: Greedy Perimeter Stateless Routing for Wireless Networks EECS 600 Advanced Network Research, Spring 2005 Shudong Jin February 14, 2005.
TOPOLOGY MANAGEMENT IN COGMESH: A CLUSTER-BASED COGNITIVE RADIO MESH NETWORK Tao Chen; Honggang Zhang; Maggio, G.M.; Chlamtac, I.; Communications, 2007.
SRL: A Bidirectional Abstraction for Unidirectional Ad Hoc Networks. Venugopalan Ramasubramanian Ranveer Chandra Daniel Mosse.
Dual-Region Location Management for Mobile Ad Hoc Networks Yinan Li, Ing-ray Chen, Ding-chau Wang Presented by Youyou Cao.
© Yamacraw, 2001 Selecting Forwarding neighbors in Wireless Ad Hoc Networks A. Zelikovsky GSU G. Calinescun, Illinois IT I. Mandoiu,
Scalable Routing Protocols for
On Calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless Networks By J. Wu and H. Li Instructor: Dr. Yinghsu Li Presented by: Chinh.
LOCALIZED MINIMUM - ENERGY BROADCASTING IN AD - HOC NETWORKS Paper By : Julien Cartigny, David Simplot, And Ivan Stojmenovic Instructor : Dr Yingshu Li.
Two Connected Dominating Set Algorithms for Wireless Sensor Networks Overview Najla Al-Nabhan* ♦ Bowu Zhang** ♦ Mznah Al-Rodhaan* ♦ Abdullah Al-Dhelaan*
Localized Low-Power Topology Control Algorithms in IEEE based Sensor Networks Jian Ma *, Min Gao *, Qian Zhang +, L. M. Ni *, and Wenwu Zhu +
A Bandwidth Scheduling Algorithm Based on Minimum Interference Traffic in Mesh Mode Xu-Yajing, Li-ZhiTao, Zhong-XiuFang and Xu-HuiMin International Conference.
On Mitigating the Broadcast Storm Problem with Directional Antennas Sheng-Shih Wang July 14, 2003 Chunyu Hu, Yifei Hong, and Jennifer Hou Dept. of Electrical.
Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department RPI Costas Busch CSCI Department.
A Multicast Routing Algorithm Using Movement Prediction for Mobile Ad Hoc Networks Huei-Wen Ferng, Ph.D. Assistant Professor Department of Computer Science.
1 Low Latency Multimedia Broadcast in Multi-Rate Wireless Meshes Chun Tung Chou, Archan Misra Proc. 1st IEEE Workshop on Wireless Mesh Networks (WIMESH),
4 Introduction Carrier-sensing Range Network Model Distributed Data Collection Simulation 6 Conclusion 2.
A Two-Tier Heterogeneous Mobile Ad Hoc Network Architecture and Its Load-Balance Routing Problem C.-F. Huang, H.-W. Lee, and Y.-C. Tseng Department of.
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
March 9, Broadcasting with Bounded Number of Redundant Transmissions Majid Khabbazian.
Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng IEEE Transactions on Mobile Computing.
CS 6401 Intra-domain Routing Outline Introduction to Routing Distance Vector Algorithm.
2010 IEEE Global Telecommunications Conference (GLOBECOM 2010)
Khaled M. Alzoubi, Peng-Jun Wan, Ophir Frieder
Mesh-based Geocast Routing Protocols in an Ad Hoc Network
Selecting Forwarding Neighbors in Wireless Ad Hoc Networks
Efficient Flooding Techniques for Mobile Ad Hoc Networks
On Constructing k-Connected k-Dominating Set in Wireless Networks
Survey on Coverage Problems in Wireless Sensor Networks
Presentation transcript:

1 A Distributed and Efficient Flooding Scheme Using 1- Hop Information in Mobile Ad Hoc Networks Department of Computer Science and Information Engineering National Cheng Kung University, Taiwan R.O.C. Authors: Hai Liu, Xiaohua Jia, Peng-Jun Wan, Xinxin Liu, and Frances F. Yao Publisher: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007 Present: Min-Yuan Tsai ( 蔡旻原 ) Date: May, 15, 2007

2 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

3 Introduction Flooding is one of the most fundamental operations in MANET Pure flooding Every node in the network retransmits the flooding message when it is its first time to receive it Generates excessive amount of redundant network traffic and thus causes congestion (causes serious Broadcast Storm problem) Cannot guarantee 100% deliverability due to excessive collisions Neighbor information based flooding 1-hop Perform poorly in reducing the redundant transmissions e.g. Edge Forwarding 2-hop or more Incur extra overhead, and hardly handle mobility e.g. Connected Dominating Set (CDS) based flooding

4 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

5 Overview of proposed method Use only 1-hop neighbor information When a node s has a message to be flooded Compute a subset of its neighbors as forwarding nodes set - F(s) Attach F(s) to the message Broadcast the message out Upon receiving a flooding message, node u Discard it if received this message before Not forwarding it if u is not in the forwarding nodes set Computes F(u) as above and broadcast it with the message

6 Overview of proposed method (contd.) Propose an algorithm to compute the forwarding nodes set Guarantee 100% deliverability And achieve the local optimality in terms of Number of forwarding nodes is the minimal Computing complexity is the lower bound O(nlogn) Note that this is a local optimality since only knowing 1-hop neighbor information

7 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

8 Theoretical foundations – Definition d(s) : Coverage disk of a node s is a disk centering at s and radius is the transmission range of s N(s) : The set of neighbor nodes of s N(s) are covered by d(s) C(A) : Coverage area of a node-set is the union of coverage disks of nodes in A “The area is covered by A” if the area is within C(A) NC(s) : Neighbor’s coverage area of s, NC(s) = C(N(s)U{s}) F(s) : Forwarding set of s is a subset of s’s neighbors that are selected for forwardingthe flooding message F(s) includes s F min (s) : The minimal forwarding set that covers NC(s)

9 Theoretical foundations – Thm 1 (100% deliverability) A flooding scheme is said to be 100% deliverability iff, FOR ANY NETEORK TOPOLOGY all the nodes in the network should be able to receive flooding message, letting every node execute the flooding scheme. i.e. A 1-hop flooding scheme achieves 100% deliverability if and only if NC(s) is covered by F(s) for each forwarding node s NC(s) is within C(F(s))

10 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

11 Efficient Algorithm to compute F(s) Only having 1-hop neighbor information, to achieve 100% deliverability, F(s) must cover the entire neighbor’s area of s. The task: Formally, minimize F(s) such that Intuitively, every node in F(s) must contribute to the boundary of NC(s) Example: s has 3 neighbors: u, v and w Since d(u) ∪ d(v) ∪ d(s) makes up the NC(s) It’s enough to cover all of s’s 2-hop neighbors if only u and v forward the message. i.e. d(w) d(u) ∪ d(v) ∪ d(s), there is no need for w to forward the message

12 A Naive O(n 2 ) algorithm, n=|N(s)| Observation: nodes further away from s are usually the nodes that contributes to the boundary of NC(s) Sort all nodes in N(s) in descending order according to there Euclidean distance to s Steps: Initially, F(s) = {} For each node u in the sorted N(s) If d(u) is not fully covered by F(s), F(s)=F(s)U {u}

13 An O(nlogn) Algorithm, n=|N(s)| Basic ideal: compute the boundary of NC(s), and thus the nodes that contribute to this boundary are the nodes in F(s) Pair-wise boundary merge to compute the boundary of a node set S Similar to merge sort Boundary of S=S 1 U S 2 Boundary of S 1 Boundary of S 2

14 Boundary Merge – Data tructure Arc Use the location of s as the reference point 3-tuple (θ s, u, θ e ) of disk u = Boundary A sequence of arcs B[], B[] is sorted in non-descending order according to their starting angles: Boundary of NC(s) is

15 Merge Boundary B i [ ] and B j [ ] Suppose now we are merging B i [k] (k th arc of boundary B i [ ]) and B j [l] (l th arc of boundary B j [ ]), and store the merged arc in B[h] There are three possible cases for two arcs No intersection Only one intersecting point Two intersecting points

16 Merge Boundary B i [ ] and B j [ ] (contd) Case 1: No intersection (without losing generality, assume B i [k] is outside of B j [l] and B i [k].θ s <=B j [l].θ s ) Case 1.1: B[h] = B i [k]; k++; h++; Case 1.2: B[h] = ; B i [k] = ; l++; h++; Case 1.3: B[h] = B i [k]; k++; h++;

17 Merge Boundary B i [ ] and B j [ ] (contd) Case 2: one intersecting point B[h] = ; B j [l] = ; k++; h++; Case 3: two intersecting points B[h] = ; B[h+1] = ; B j [l] = ; k++; h+=2;

18 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

19 Optimization When node u receives a flooding message from s, and u is in F(s), F(u) can be further optimized based on F(s) by removing some nodes that are already covered by F(s) Use node ID as the priority for forwarding messages Nodes in F(u) can be removed if they are within C(X) Note only is considered, because u only know the geographic locations of its neighbors, and this information is necessary to check if nodes are covered by X Example: Assume F(u) = {1,2,3,4,5}, id(v)<=id(u) 1 & 2 are in N(s) ; 3 is covered byv Then F opt (u)={4,5} X=

20 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

21 Mobility Handling Two strategies to maintain the flooding scheme No update : Re-compute the forwarding sets for each flooding request Incremental update: Updates its forwarding sets upon each topology change 3 cases that require updating F(u) A neighbor v of u moves, but still in N(u) A neighbor v of u moves out of N(u) A node v moves into N(u)

22 Mobility Handling (contd.) Case 1: A neighbor v of u moves, but still in N(u) Case 1.1: If v F(u) and d(v) at the new location exceeds the boundary of NC(u) Find arcs affected by the movement of v, checking if their sectors overlap with the sector of d(v) These arcs form a continues segment of the boundary Re-compute F(u) by merging this segment and the arc of d(v) Case 1.2: If v F(u), boundary may be affected by both the current and former location of v Find arcs contributes to the new boundary because of leaving of v, and then merge these arcs to compute the new boundary Similar to 1.1, update this new boundary according to the new location of v

23 Mobility Handling Case 2: A neighbor v of u moves out of N(u) If v F(u), no need to update If v F(u), this similar to the first step in Case 1.2 Case 3: A node v moves into N(u) Similar to Case 1.1

24 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

25 Simulation Model NS-2 test bed, Packet size is 256 bytes, Channel bandwidth is 2Mbps Adjust parameters: #nodes, transmission range, network size and network load By default, #node=1000, transmission range=250m, network size=1000m*1000m, network load=10 Pkt/s Compare proposed scheme with Pure flooding Edge Forwarding CDS-based Flooding

26 Edge Forwarding Use 1-hop neighbor information Each node divides its transmission coverage into six equal-size sectors Upon receiving a flooding message, a node decides if it forwards the message based on the availability of other forwarding nodes in the overlapped areas Node b does not forward iff There exists nodes in A, B and C And any nodes in D and E can be reached by nodes in A and C

27 CDS-based Flooding Connected Dominating Set (CDS) DS is a subset of nodes s.t. every node in the graph is either in DS or is adjacent to a node in DS All forwarding nodes forms a CDS in the network Finding minimal CDS(MCDS) is NP-hard An approximation algorithm Use 2-hop neighbor information A node marks itself belonging to CDS if there exist two unconnected neighbors and they have greater IDs

28 Performance vs. #Nodes Our scheme and Edge Forwarding become closer to the lower bound when #nodes increases, because forwarding sets are saturated while N(u) becomes larger #nodes has little effect on CDS High density means more chance for u’s neighbors being connected High density means high chance there are exist two unconnected neighbors Our scheme has lowest collisions Our scheme has 100% deliverability when #nodes is from 200 to 400

29 Performance vs. Transmission Range N(u) becomes larger while the transmission range increase. Same effect as increasing network density More closer to the lower bound than increasing network density, because flooding can be done in less steps due to the large transmission range

30 Performance vs. Network Size and Network Load Fixed node density = 1000 nodes / km 2 Our scheme and Edge Forwarding are scalable with network size, while CDS works better in smaller network Deliverability falls down earlier when network load increases More frequently flooding message are generated, larger number of collisions nodes experience Edge Forwarding and Pure Flooding falls down when the network load is just 5Pkt/s

31 Outline 1. Introduction 2. Overview of proposed method 3. Theoretical foundations 4. Efficient Algorithm to compute F(s) 5. Optimization 6. Mobility Handling 7. Simulation Results 8. Conclusion

32 Conclusion An efficient flooding scheme use only 1-hop neighbor information Local optimality in terms of Number of forwarding nodes is minimal Time complexity is the lowest Handle mobility efficiently