CENBG, University Bordeaux 1 CNRS/IN2P3

Slides:



Advertisements
Similar presentations
Claudia Nones Physics of Massive Neutrinos - Blaubeuren, July 1 - 5, 2007 Status of Cuoricino and CUORE with some remarks on nuclear matrix elements Centre.
Advertisements

Double Beta Decay review
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
Double Beta Decay review
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
Double beta decay : physics case
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
LNGS Capelli Silvia on behalf of CUORE Collaboration
Contents Lecture 1 General introduction What is measured in DBD ? Neutrino oscillations and DBD Other BSM physics and DBD Nuclear matrix elements Lecture.
Double beta decay Ruben Saakyan UCL 25 March 2004.
Double Beta Decay Present and Future
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
ILIASN4 Cascina, November 3rd, 2005Dominique Lalanne.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
VIeme rencontres du Vietnam
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
Reactor neutrinos, double beta and beta decays Experimental review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU) and Centre.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Claudia Nones CEA/IRFU/SPP GDR Neutrino Meeting – Saclay – 4/11/15 The bolometric way towards the inverted hierarchy of the neutrino mass: CUORE-0 → CUORE.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
SuperNEMO collaboration
Double Beta Decay - status and future
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Status and perspectives for Double Beta Decay measurements
XAX Can DM and DBD detectors combined?
Double beta decay and Majorana neutrinos
of double beta decay experiments (outside of Japan)
• • • Ge measurements for SuperNEMO
Search for Lepton-number Violating Processes
Presentation transcript:

CENBG, University Bordeaux 1 CNRS/IN2P3 Beta decay experiments Fabrice Piquemal CENBG, University Bordeaux 1 CNRS/IN2P3 and LSM (CEA – CNRS) Double beta decay and tritium experiments, current and future Thanks to: G. Gratta, S. Elliot, A. Giuliani, S. Schoenert, Ch. Weinheimer,T. Kishimito, M. Masaharu F. Piquemal (CENBG) LP07

Beta decays: physics case - Absolute neutrino mass and neutrino mass hierarchy (SDB, DBD) Nature of neutrino : Dirac (n n) or Majorana (n =n) (DBD) Right-handed current interaction (DBD) CP violation in leptonic sector (DBD) Search of Supersymmetry and new particles (DBD) SDB: Single beta decay DBD: Double beta decay F. Piquemal (CENBG) LP07 Daegu August 2007

Accelerators (K2K,Minos) Neutrino properties Oscillations Atmospheric (SK) Accelerators (K2K,Minos) Reactors (CHOOZ) Accelerators (JPARC) Solar (SNO, SK) Reactors (KamLAND) U ,b : CP Majorana phase tan223=1.0 ± 0.3 sin2213 < 0.16 tan212=0.39 ± 0.05 CP= CP Dirac phase m2atm = m231 = (2.3  0.2 ) 10-3 eV2 m2sol = m212 = (7.9  0.3) 10-5 eV2 F. Piquemal (CENBG) LP07 Daegu August 2007

Neutrino mass Absolute mass ? Beta decay mv = S |Uei| mi <2.3 eV 1/2 2 2 Beta decay mv = S |Uei| mi <2.3 eV Double beta decay |<mn>| = |SUei mi| < 0.2 - 0.8 eV Cosmology mi = m1+m2+m3 <~1 eV 2 m2 m12 m22 m32 Degenerate m1≈m2≈m3» |mi-mj| Normal hierarchy m3>>> m2~m1 Inverted hierarchy m2~m1>>m3 ? Mass hierarchy ? F. Piquemal (CENBG) LP07 Daegu August 2007

Beta decay (A,Z)  (A,Z+1) + e- + ne dN/dE ~ [ (E0-Ee)2 – mi2 ]1/2: averaged neutrino mass 3 Fraction of decay in [Qb – mn, Qb] ~ (DE/Qb) lowest Qb value 3H (Qb= 18.6 keV) High counting rate Low background Energy resolution ~ mn F. Piquemal (CENBG) LP07 Daegu August 2007

Beta decay: present status MAC-E spectrometers Source Electron analyzer Electron counter 3H integral spectrum: select Ee > Eth MAINZ: m2 = -0.6 ± 2.2 ± 2.1 eV2  mn< 2.3 eV (95% C.L.) C. Kraus et al., Eur. Phys. J. C 40 (2005) 447 Troisk: m2 = -2.3 ± 2.5 ± 2.0 eV2 mn< 2.05 eV (95% C.L.) But systematics from end-point fluctuations not included F. Piquemal (CENBG) LP07 Daegu August 2007

Improvement of DE: 0.93 eV (4.8 eV for Mainz) Beta decay: KATRIN experiment Sensitivity mn < 0.2 eV Improvement of DE: 0.93 eV (4.8 eV for Mainz) Larger acceptance Statistics 100 days  1000 days Commissioning and start : 2010 F. Piquemal (CENBG) LP07 Daegu August 2007

Individual electron energy Neutrinoless double beta decay bb(0n) Electron energy sum Qbb Arbitrary scale Observables Angular distribution Individual electron energy Half-life T1/2 Allow to distinguish the mechanism Background : natural radioactivity, radon,neutrons, muons, bb(2n) (A,Z) (A,Z+2) + 2 e- DL = 2 Lepton number violation Light neutrino exchange Majorana neutrino (n=n) Massive neutrino Phase space factor Nuclear matrix element Other possible process : V+A current : <mn>, <l>, <h> Majoron emission : <gM> Supersymmetry : l’111, l’113 T1/2= F(Qbb,Z) |M0n|2 <mn>2 -1 5 <mn>= m1|Ue1|2 + m2|Ue2|2.eia + m3|Ue3|2.eib |Uei|: mixing matrix elements a et b: Majorana phases Schechter-Valle theorem: bb(0n) Majorana neutrinos F. Piquemal (CENBG) LP07 Daegu August 2007

Effective neutrino mass and neutrino oscillations Inverted hierarchy Normal hierarchy Degenerated Degenerate: can be tested Inverted hierarchy: tested by the next generation of bb experiment <mn> in eV Normal hierarchy: inaccessible F. Piquemal (CENBG) LP07 Daegu August 2007

Uncertainties for extraction of <mn> Nuclear matrix elements 5 T1/2= F(Qbb,Z) |M0n|2 <mn>2 -1 Shell Model - QRPA Two different QRPA calculations A lot of improvements have been done but still a factor 2-3 of discrepancy Uncertainties for extraction of <mn> In the following, « latest NME » will refer to these Nuclear Matrix Elements F. Piquemal (CENBG) LP07 Daegu August 2007

bb(0n) search is a very dynamic field Experiments Isotopes Techniques Main caracteristics NEMO3 100Mo,82Se Tracking + calorimeter Bckg rejection, isotope choice SuperNEMO 82Se, 150Nd Cuoricino 130Te Bolometers Energy resolution, efficiency CUORE GERDA 76Ge Ge diodes Energy resolution, eficiency Majorana COBRA 130Te, 116Cd ZnCdTe semi-conductors EXO 136Xe TPC ionisation + scintillation Mass, efficiency, final state signature MOON 100Mo Compactness, Bckg rejection CANDLES 48Ca CaF2 scintillating crystals Efficiency, Background SNO++ 150Nd Nd loaded liquid scintillator Mass, efficiency XMASS Liquid Xe CARVEL CaWO4 scintillating crystals Yangyang 124Sn Sn loaded liquid scintillator DCBA Gazeous TPC Bckg rejection, efficiency Talk focuses on the running experiments and on some 100 kg scale projects starting within 5 years

bb(0n): Present situation Heidelberg-Moscow (2001) ~11 kg of enriched Ge diodes in 76Ge (86%) Pure calorimeter High energy resolution and efficiency But poor background rejection (pulse shape analysis) Claim for discovery since 2002 (2002 : 3.1 s and 2004: 4 s) 35.5 k.yr 2004: 4 s 0.06 cts/keV/kg/yr bb(0n) ? Very controversial result 2006 new PSA analysis: 6 s effect T 1/2 >1.9 1025 yr (90% CL) T1/2 = 2.23 1025 yr +0.44 -0.31 <mn> <0.35-1.05 eV (90% CL) <mn> = 0.32 ± 0.03 eV Eur. Phys. J., A 12 (2001) 147 F. Piquemal (CENBG) LP07

Future Ge experiments GERDA (Germany, Italy, Belgium, Russia) Majorana (USA, Russia, Japan, Canada) Selection of very pure material (Majorana) Removal of matter (GERDA) Segmentation of detectors for background rejection Use of liquid nitrogen or argon for active shielding Improvement of Pulse Shape Analysis GERDA PHASE I: 17.9 kg of enriched 76Ge (from HM and IGEX) In 1 year of data (no Background) check of Klapdor’s claim Start 2009 at Gran Sasso, results 2010 PHASE II: 40 kg of enriched 76Ge T1/2 > 2 1026 yr in 3 years of data <mn> < 110 meV (no background) Majorana: 30- 60 kg of enriched 76Ge (3 yr) T1/2 > 1. 1026 yr mn < 140 meV Start 2011 Collaboration for 1 ton experiment Reduction of background by a factor 10 – 100 compare to HM

Cuoricino Bolometers of TeO2 (Qbb= 2.528 MeV) Heat sink Bolomètres: CUORICINO Bolometers of TeO2 (Qbb= 2.528 MeV) Heat sink Signal:∆T = E/C Thermometer Double beta decay Crystal absorber High energy resolution 5-7 keV (FWHM) Natural abundance for 130Te: 34% High efficiency: 86% But no electron identification Background from internal and surface contamination in a emitters 214Bi (238U chain) 208Tl (232Th chain) 60Co pile up 5.3 kg.an T1/2 > 1. 1024 ans (90%) <mn> <0.5 – 2.4 eV bb(0n) Energy (keV) Running at Gran Sasso since 2003 F. Piquemal (CENBG) LP07 Daegu August 2007 F. Piquemal (CENBG) LP07

Cuoricino results 0DBD 11.83 kg.yr Gamma region, dominated by gamma and beta events, 0DBD Alpha region, dominated by alpha peaks (internal or surface contaminations) Bckg: 0.18 cts/keV/kg/yr 60Co pile up 130Te 0vBB 11.83 kg.yr Energy (keV) T1/2 > 3. 1024 yr (90% CL) <mn> < 0.2 – 1 eV (90% CL) Expected final sensitivity ~2009: T1/2 > 6. 1024 yr <mn> < 0.1 – 0.7 eV

Array of 988 TeO2 5x5x5 cm3 crystals CUORE (Italy, USA,Spain) 750 kg of TeO2  203 kg of 130Te Array of 988 TeO2 5x5x5 cm3 crystals Improvement of surface event rejection Goal :Nbckg=0.01 cts.keV-1.kg-1.yr-1 (Factor 20 compare to Cuoricino) Data taking foreseen in 2011 Expected sensitivities (5 years of data) Nbckg=0.01 cts.keV-1.kg-1.yr-1 T½ > 2.1 1026 yr <mn> < 0.03 – 0.17 eV Nbckg=0.001 cts.keV-1.kg-1.yr-1 T½ > 6.6 1026 yr <mn> < 0.015 – 0.1 eV F. Piquemal (CENBG) LP07

NEMO 3 Tracko-calo detector e- e- bb events (France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo detector Central source foil (~50 mm thickness) Tracking detector (6180 drift cells) t = 0,5 cm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators + PMTs) Efficiency 8 % Running at Modane Underground lab since 2003 E1 e- Vertex Multi-isotopes (7 kg of 100Mo, 1 kg of 82Se,…) Identification of electrons Very good bckg rejection (< 10-3 cts/keV/kg/y) Angular distribution and single electron energy (necessary to distinguish the mechanism in case of discovery) But modest energy resolution and efficiency e- E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm E2 bb events F. Piquemal (CENBG) LP07

NEMO3: bb(0n) results 100Mo Phase I, High radon 7.6 kg.yr Phase II, Low radon 5.7 kg.yr Phase I + II 13.3 kg.yr Number of events / 40 keV Number of events / 40 keV Number of events / 40 keV [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 8.1 events Nobserved = 7 events [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 3.0 events Nobserved = 4 events [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 11.1 events Nobserved = 11 events Phases I + II T1/2(bb0n) > 5.8 1023 yr (90 % C.L.) <mn> < 0.6 – 1.3 eV T1/2(bb0n) > 2. 1024 yr (90 % CL) <mn> < 0.3 –0.7 eV Expected in 2009

SuperNEMO project Tracko-calo with 100 kg of 82Se or 150Nd (France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo with 100 kg of 82Se or 150Nd (possibility to produce 150Nd with the French AVLIS facility) T½ > 2. 1026 yr <mn> < 0.05 – 0.09 eV Modules based on the NEMO3 principle Measurements of energy sum, angular distribution and individual electron energy 3 years R&D program: improvement of energy resolution Increase of efficiency Background reduction ……. 100 kg 20 modules R&D funded by France, UK and Spain 2009: TDR 2011: commissioning and data taking of first modules in Canfranc (Spain) 2013: Full detector running

EXO Liquid Xe TPC Energy measurement by ionization + scintillation (USA, Canada, Switzerland, Russia) Liquid Xe TPC Energy measurement by ionization + scintillation Tagging of Baryum ion (136Xe  136Ba++ + 2 e-) Large mass of Xe Identification of final state  background rejection But no e- identification Poor background rejection without Ba ion tagging R&D for Ba ion tagging in progress Prototype EXO-200 200 kg of 136Xe, no Ba ion tagging Installation in progress in WIPP underground lab 2007 Could measure bb(2n) of 136Xe EXO 200 (2 years) T½ > 6.4 1025 yr (90% CL) <mn> < 0.27- 0.38 eV

Enriched isotope mass (kg) Summary Summary Experiment Isotope Enriched isotope mass (kg) T1/2 (yr) <mn> (eV) Start Status CUORE 130Te 203 2.1 1026 0.03 - 0.07* 2011 Funded GERDA phase I phase II 76Ge 17.9 40 3. 1025 2. 1026 0.2 – 0.5* 0.07 – 0.2* 2009 Majorana 30 - 60 1.1026 0.1 – 0.3* EXO-200 136Xe 200 6.4 1025 0.2 - 0.7* 2008 SuperNEMO 82Se 150Nd 100 1026 0.05- 0.09* 0.07 R&D CANDLES 48Ca 0.5 ~0.5 MOON II 100Mo 120 0.09 – 0.13 ? DCBA 20 SNO++ 500 COBRA 116Cd, 420 * Calculation with NME from Rodim et al., Suhonen et al., Caurier et al. PMN07

<mn> current and future limits . HM Cuoricino NEMO3 Klapdor claim Limits in 2009 HM,NEMO3, Inverted hierarchy Normal hierarchy Degenerated Expected limits 2009 – 2015 CUORE,GERDA, Majorana, SuperNEMO, EXO Use of « latest NME » for all experiments

Summary Summary Single beta decay KATRIN mn < 2.3 eV  mn < 0.2 eV results in ~2014 Other possibility : bolometers with 187Re (Qb=2.47 keV) but long R&D (at least 10 years to reach 0.2 eV) Double beta decay Very active field. A claim to be checked Current experiments will reach a sensitivity on <mn> ~(0.2 – 0.7) eV in 2009 Need to measure several nucleus with different techniques (only tracko-calo can distinguish the mechanism in case of discovery) Next generation ~ source mass 100 – 200 kg. <mn> ~ (0.03 – 0.1) eV Will cover partially the inverted hierarchy mass scenario (2011 – 2015) Essential step for 1 ton scale experiment ( background considerations) Need improvements for Nuclear Matrix Element calculations

BACKUP SLIDES

bb(0n) signal ? HM claim 2001 2002 (3.1s) 2004: new calibration (4s) T1/2 >1.9 1025 <mn> < 0.35-1.05 (90%) T1/2= (0.8-18.3) 1025 yr <mn>= 0.11 – 0.56 eV 2004: new calibration (4s) Best value:0.39 eV

bb(0n) signal ? 6s Today Estimation of the background level +0.44 6s T1/2 = 2.23 1025 yr <mn> = 0.32 ± 0.03 eV -0.31 (Result with last NME should be <mn> = 0.11 – 0.71 eV) Estimation of the background level Problems for some well-known peaks (214Bi) Some unknow lines in the same region 56Co produced by cosmic rays (2034 keV photon+ 6 keV X-ray) 76Ge(n,)77Ge (2038 keV photon) Some unknown line Inelastic neutron scattering (n,n‘) on lead Other suggestions, can be combination of all

Experimental techniques M: masse (g) e : efficiency KC.L.: Confidence level N: Avogadro number t: time (y) NBckg: Background events (keV-1.g-1.y-1) DE: energy resolution (keV) > . . e A M . t NBckg . DE ln2 . N kC.L. (y) Today, no technique able to optimize all the parameters Calorimeter Semi-conductors Source = detector Calorimeter Loaded Scintillator Source = detector Tracko-calo Source  detector Xe TPC Source = detector b b b b b b b b e, DE e, M NBckg, isotope choice e,M, (NBckg) F. Piquemal (CENBG) LP07

GERDA and Majorana Strategy: Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays e-  detector segments Liquid argon scintillation crystal anti-coincidence Detector segmentation pulse shape analysis R&D: liquid argon anti-coincidence

From Fedor Simkovic PMN07

«bb factory» → tool for precision test NEMO 3:100Mo 2 results Energy sum spectrum Angular distribution 12000 10000 8000 6000 4000 2000 Number of events 12000 10000 8000 6000 4000 2000 219 000 events 6914 g 389 days S/B = 40 219 000 events 6914 g 389 days S/B = 40 NEMO-3 NEMO-3 100Mo 100Mo Number of events/0.05 MeV 7.6 kg.yr 7.6 kg.yr Data 22 Monte Carlo Data 22 Monte Carlo Background subtracted Background subtracted Cos() E1 + E2 (MeV) T1/2(bb2n) = 7.11 ± 0.02 (stat) ± 0.54 (syst)  1018 yr Phys. Rev. Lett. 95 182302 (2005) «bb factory» → tool for precision test F. Piquemal (CENBG) LP07

Beta decay: MARE experiment 1 mm MicroBolometers of ArReO4 187Re Qb = 2.47 keV Full energy measurement No systematic from source But time response of sensor  pile-up MARE-I: 300 detectors FWHM ~20 eV t ~100 – 500 ms mn < 2 –4 eV ( 5 years) MARE – II : 5000 detectors (~2018) t ~1 – 5 ms mn < 0.2 eV (10 years) MIBETA 10 detectors mn 2 = -141  211 stat  90 sys eV2 mn < 15 eV (90% c.l.)

View of the field: present and future Today experiments have a mass of enriched source ~10 kg To reject inverted hierarchy mass scenario, enriched source mass  1 ton All projects have this goal but it is unrealistic to plane to go directly from 10 kg to 1 ton scale (understanding and control of the background) Intermediate step at 100 kg scale is needed (as proposed by each project) Talk focuses on the running experiments and on some 100 kg scale projects starting within 5 years F. Piquemal (CENBG) LP07 Daegu August 2007