1 A survey of Internet Topology Discovery. 2 Outline Motivations Internet topology IP Interface Level Router Level AS Level PoP Level.

Slides:



Advertisements
Similar presentations
1 IP Forwarding Relates to Lab 3. Covers the principles of end-to-end datagram delivery in IP networks.
Advertisements

Transitioning to IPv6 April 15,2005 Presented By: Richard Moore PBS Enterprise Technology.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Introduction to IPv4 Introduction to Networks.
Limited address space The most visible and urgent problem with using IPv4 on the modern Internet is the rapid depletion of public addresses. Due to the.
Computer Networks21-1 Chapter 21. Network Layer: Address Mapping, Error Reporting, and Multicasting 21.1 Address Mapping 21.2 ICMP 21.3 IGMP 21.4 ICMPv6.
2: Comparing IPv4 and IPv6 Rick Graziani Cabrillo College
21.1 Chapter 21 Network Layer: Address Mapping, Error Reporting, and Multicasting Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Internet Control Protocols Savera Tanwir. Internet Control Protocols ICMP ARP RARP DHCP.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Internet Control Message Protocol (ICMP)
1 Internet Networking Spring 2004 Tutorial 7 Multicast Routing Protocols.
Oct 21, 2004CS573: Network Protocols and Standards1 IP: Addressing, ARP, Routing Network Protocols and Standards Autumn
Heuristics for Internet Map Discovery Ramesh Govindan USC/Information Sciences Institute Joint work with Hongsuda Tangmunarunkit.
Internet Networking Spring 2003
CS Internetworking Slide Set 8. In this set... Addressing Datagram forwarding.
Heuristics for Internet Map Discovery R. Govindan, H. Tangmunarunkit Presented by Zach Schneirov.
IP Routing: an Introduction. Quiz
Delivery, Forwarding, and Routing
ICMP: Ping and Trace CCNA 1 version 3.0 Rick Graziani Spring 2005.
Measuring ISP topologies with Rocketfuel Ratul Mahajan Neil Spring David Wetherall University of Washington ACM SIGCOMM 2002.
1 Network Topology Measurement Yang Chen CS 8803.
Chapter Overview TCP/IP Protocols IP Addressing.
Network Layer (Part IV). Overview A router is a type of internetworking device that passes data packets between networks based on Layer 3 addresses. A.
Support Protocols and Technologies. Topics Filling in the gaps we need to make for IP forwarding work in practice – Getting IP addresses (DHCP) – Mapping.
CCNA Introduction to Networking 5.0 Rick Graziani Cabrillo College
TELE202 Lecture 10 Internet Protocols (2) 1 Lecturer Dr Z. Huang Overview ¥Last Lecture »Internet Protocols (1) »Source: chapter 15 ¥This Lecture »Internet.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Guide to TCP/IP, Third Edition
The Network Layer. Network Projects Must utilize sockets programming –Client and Server –Any platform Please submit one page proposal Can work individually.
21.1 Chapter 21 Network Layer: Address Mapping, Error Reporting, and Multicasting Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Computer Networks. IP Addresses Before we communicate with a computer on the network we have to be able to identify it. Every computer on a network must.
Basic Transition Mechanisms for IPv6 Hosts and Routers -RFC 4213 Kai-Po Yang
10/8/2015CST Computer Networks1 IP Routing CST 415.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 Unicast Routing Protocols.
TCOM 515 IP Routing. Syllabus Objectives IP header IP addresses, classes and subnetting Routing tables Routing decisions Directly connected routes Static.
Internet Protocols. Address Resolution IP Addresses are not recognized by hardware. If we know the IP address of a host, how do we find out the hardware.
Chelebi: Subnet-level Internet Mapper Mehmet H. Gunes University of Nevada, Reno.
1 Chapter 8 – TCP/IP Fundamentals TCP/IP Protocols IP Addressing.
Internet Protocols (chapter 18) CSE 3213 Fall 2011.
Routing and Routing Protocols
Internet Protocols. ICMP ICMP – Internet Control Message Protocol Each ICMP message is encapsulated in an IP packet – Treated like any other datagram,
ICMPv6 Error Message Types Informational Message Types.
Routing Algorithms and IP Addressing Routing Algorithms must be ▪ Correctness ▪ Simplicity ▪ Robustness ▪ Stability ▪ Fairness ▪ Optimality.
Cisco Confidential © 2013 Cisco and/or its affiliates. All rights reserved. 1 Cisco Networking Training (CCENT/CCT/CCNA R&S) Rick Rowe Ron Giannetti.
IP. Classless Inter-Domain Routing Classful addressing scheme wasteful – IP address space exhaustion – A class B net allocated enough for 65K hosts Even.
NETWORKING (2) Dr. Andy Wu BCIS 4630 Fundamentals of IT Security.
IP Protocol CSE TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Addressing the network IPv4 CCNA Exploration Semester 1 – Chapter 6.
Network Devices and Firewalls Lesson 14. It applies to our class…
Network Layer IP Address.
NAT – Network Address Translation
IP: Addressing, ARP, Routing
ICMP The IP provides unreliable and connectionless datagram delivery. The IP protocol has no error-reporting or error-correcting mechanism. The IP protocol.
Scaling the Network: The Internet Protocol
ICMP ICMP – Internet Control Message Protocol
IP Forwarding Covers the principles of end-to-end datagram delivery in IP networks.
Introduction to Networking
Chapter 2: Static Routing
RESOLVING IP ALIASES USING DISTRIBUTED SYSTEMS
IP Forwarding Relates to Lab 3.
Internet Control Message Protocol (ICMP)
Measured Impact of Crooked Traceroute
Internetworking Outline Best Effort Service Model
IP Forwarding Relates to Lab 3.
Internet Protocol, Version 6 (IPv6)
Scaling the Network: The Internet Protocol
IP Forwarding Relates to Lab 3.
Lecture 26: Internet Topology CS 765: Complex Networks.
Networking and Network Protocols (Part2)
Computer Networks Protocols
Presentation transcript:

1 A survey of Internet Topology Discovery

2 Outline Motivations Internet topology IP Interface Level Router Level AS Level PoP Level

3 Motivations The topology data collected can form the basis for a formal graph of the internet. The properties derived from the internet graph can be used as input to simulations. Networking management. Design and evaluation protocol.

4 Internet topology First level: IP interface level Second level: Router level Third level: Point of presence (PoP) level Fourth level: Autonomous system (AS) level

5 Internet topology

6 IP interface level It’s composed of the IP interfaces of routers and end-hosts. All routers and some hosts have multiple interfaces, and each interface appears as a separate node in this topology.

7 IP interface level Four algorithm to discover topology Based on SNMP Based on the broadcast ping and the DNS transfer zone Based on DNS transfer zone and traceroute Based only on traceroute

8 Algorithm based on SNMP For each router, one finds neighboring routers from that router’s ipRouteTable entry. Hosts are obtained from the router’s Address Resolution Protocol (ARP) table entries. ARP is a protocol used to map IP network addresses to the hardware addresses used by a data link protocol. All entries are obtained through SNMP. Each router is pinged to be sure it is alive. But this algorithm can only be used on networks where SNMP is enabled on all routers.

9 Algorithm based on the broadcast ping and the DNS transfer zone First, get the list of all hosts in a domain, using the DNS transfer zone Second, check the validity of this list with a broadcast ping. this algorithm heavily depends on DNS transfer zone and broadcast ping, which both may be unavailable for security reasons. Ex firewall

10 Algorithm based on traceroute and the DNS transfer zone The basic idea of the algorithm is to get a list of all routers and hosts in the domain with DNS transfer zone and then initiate a traceroute to each member of this list.

11 Algorithm based only on traceroute The difference between this algorithm and the previous one is the way which the IP addresses are obtained. Here, a heuristic is used to discover the address space to probe.

12 Traceroute

13 Traceroute Problems will occur ICMP not enable or ICMP rate limiting. Destination not respond. Ex firewall etc.

14 Router Level An aggregation of the IP interface level, i.e. the summary of all the IP addresses of a router into a single identifier, called alias resolution

15 Router Level

16 Router Level The existing approaches for alias resolution Address based method: RFC1122[64] IP identification based method DNS based method Graph based method The Analytical Alias Resolver (AAR) TTL-limited with record route option method IPv6 based method

17 Address based method The source sends a UDP probe with a high port number to the router’s interface X. If the source address of the resulting “Port Unreachable” ICMP message is Y, then X and Y are aliases for the same router. The drawback of this solution is that some routers do not generate ICMP messages, making alias resolution impossible.

18 IP identification based method Send a UDP probe packet with a high port number to the two potential aliases. The “Port Unreachable” ICMP responses are encapsulated within IP packets and, so each one includes an IP identifier (x and y). Then, one sends a third packet to the address that responded first. Assume that z is the IP identifier of the third response and x was the IP identifier of the first response. If x < y < z and z – x is small, the addresses are likely aliases. This method, in like the address based method, works only if a router responds to probes

19 DNS based method This method considers similarities in router host names and works when an AS uses a systematic naming scheme for assigning IP addresses to router interfaces. This method is especially interesting as it can work even if a router does not respond to probes directed to itself. Ally uses this technique against unresponsive routers with the help of the Rocketfuel’s name DNS decoder

20 Graph based method This method extracts from traceroute outputs a graph of linked IP addresses in order to infer likely and unlikely aliases. It is based on two assumptions: If two IP addresses precede a common successor IP address, then they are likely to be alias. Two addresses found in a same traceroute are unlikely to be aliases

21 Graph based method

22 The Analytical Alias Resolver They propose a graph theoretic formulation of the alias resolution problem and developed the AAR algorithm to solve it. Given a set of path traces, AAR utilizes the common IP address assignment scheme to infer IP aliases within the collected path traces.

23 TTL-limited with record route option method The idea is to perform a standard traceroute with the Record Route (RR) IP option enabled. This option is supposed to force an intermediate router to record its IP address in the IP packet that traverses it. Size constraints, an IP packet cannot contain more than nine IP addresses of intermediate routers

24 TTL-limited with record route option method

25 IPv6 based method Atlas tries to find addresses belonging to the same router relying on the assumption that routing header processing in IPv6 routers is separate from delivering packets to the TCP/UDP layers. To elicit the equivalence of two addresses X and Y, Atlas performs a traceroute to Y via X. When the first probe reaches router X, at a distance h, the first swaps the address X in the destination field with final address Y contained in the routing header.

26 Next, the hop limit is checked. If we assume that the value is 1, an ICMPv6 hop limit exceeded in transit message response is triggered. Because the destination address field of the probe packet is now Y, the source address of the ICMPv6 response also becomes Y. The next probe packet, with hop limit h1, is delivered to the UDP layer, causing a port unreachable response. Thus, if X and Y belong to the same router, the trace X- Y will report Y-Y and the trace Y-X will report X- X.

27 Comparison of alias resolution techniques

28 AS level Relationships Topology information sources Internet registries BGP routing information

29 AS( Autonomous System ) An AS is also sometimes referred to as a routing domain. Each AS is identified by a unique 16-bit number assigned by the internet assigned numbers authority (IANA).

30 AS Relationships

31 Routing Registry Information Regional Internet Registries are organizations responsible for allocating AS numbers and IP address blocks, all of which are accessible using the WHOIS protocol. Internet Routing Registry (IRR) is another group of databases maintained by several organizations and containing documented routing policies. These policies are available through the WHOIS protocol and are expressed in the Routing Policy Specification Language (RPSL)

32 Advantage The access is simpler and more efficient to implement than active method probing They provide high-level information such as routing policies which are otherwise more difficult to obtain. Disadvantage: The provided information is often incomplete. Registry data quality is questionable and often inconsistent These registries are not able to precisely reflect the actual state of routing in the network.

33 BGP Routing Information BGP leading to an individual view of the network for each router, not unified view of the network BGP information source: Looking glasses and route servers Looking glasses is a web interface to a BGP router which allows BGP data querying and limited use of debugging tool ex. Ping traceroute

34 BGP dumps Provide collected information form BGP routers around the world. Ex.RouteViews, RIPE NCC

35 Advantage: No need to deploy an infrastructure for exploring the network Provide actual state of the network Disadvantage: BGP doesn ’ t provide complete information due to missing AS relationships that include both p2c and p2p type relationships.

36 POP level A point of presence is a collection of routers owned by an AS in specific location

37

38 Reference Donnet.B, Friedman.T, “ INTERNET TOPOLOGY DISCOVERY: A SURVEY ” IEEE,Communications Surveys & Tutorials,Fourth Quarter.2007

39 END