MICROMOUSE 2006 Version: Meat & Potatoes. Alex Zamora Tyson Seto-Mook Mike Manzano Alex de Angelis Aaron Fujimoto The Team:

Slides:



Advertisements
Similar presentations
Proposal Presentation EE 396 – Micromouse Spring 2008 Saturday, February 9, 2008 Donald Kim Lab - POST 214.
Advertisements

Ramrod IV Micromouse 396. The Team  Andrew Igarashi – Programming  Kevin Li – Hardware  Amy Maruyama – Hardware  Stephen Nakamura – Hardware  Quang.
A fully autonomous robot designed to navigate and solve a maze.
The Pied Pipers Alyssa Visitacion Ken Shum Joanne Flores.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
Design Presentation The Prodigy. Introduction Group Members: Dale Balsis Tyson Seto-Mook Calvin Umeda Keoni Wasano.
Design Presentation Fast D.A.D.I.. Team Members D - ale Balsis A - aron Tsutsumi D - ennis How I - kaika Ramos.
Ramrod III Micro mouse. The Team  Andrew Igarashi – software  Kevin Li – hardware  Stephen Nakamura – hardware  Quang Ngu – software.
Preliminary Design Review Micromouse EE 296 Spring 2008.
EE 296 TEAM “DA KINE” MICROMOUSE PROJECT PROPOSAL Team members: Software Group - Henry, James Roles : tracking, mapping, guidance, interface Hardware Group.
Micromouse Team:. Team Members Kanoa Jou (Leader) Ryan Sato (Organizer) KiWoon Ahn (Organizer) Brett Ikei (Recorder)
EE396 Project Micromouse Team: Ocha. Team Members Kanoa Jou (Programmer) Ryan Sato (Hardware) KiWoon Ahn (Recorder) Alan Do (Programmer)
Micromouse Projects LTD. Presents a STIG, Whitey, Zephyr Production.
Team 4 Shane Sunada – Project Leader Malcolm Menor – Project Manager Nathan Umeda – Technical Supervisor Joseph Longhi – Documentation Preliminary Design.
FINAL PRESENTATION Lost Café 66 EE 296 5/6/2004. Introduction of Team Team Leader: Arthur Phanphengdy Members: Quincy Quach Kang Lu Jackson Ng.
Shane Sunada Malcolm Menor Joseph Longhi. - Autonomous maze solving robot -16x16 maze starting at corner - No contact after switched on - No going under.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
Curry Mouse EE 296 Project Proposal Presentation February 11, 2006.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
Micromouse 296 Final Presentation Fall 2008 Group: Rabbitwagon.
Preliminary Design Review
1 Final Presentation Team Amaze Me May 8, Content Members Overview of Project Goals Structure of Design Design Decisions Problems & Improvements.
TEAM MECHAZAWA Jeong Bang Riley Ceria Grant Higa.
KTD Micromouse Overview Team Goals Approach Outstanding Problems Future Solutions Final Status.
take your JACKET OFF KELLIESCOTT KENDALLJAYSON Final Presentation  Members:  Jayson Nakakura: Chassis Design and Fabrication  Kellie Murakami: Circuitry.
The Pied Pipers Joanne Flores Ken Shum Alyssa Visitacion.
Team P.A.C.K men EE 296 Project. Introduction to team P.A.C.K men Paul Linden – Systems specialist. Aaron Lake – Power specialist. Chris McLeod – Hardware.
The Prodigy Micromouse 296/396. Team Members/Assignments Dale Balsis (396) – Web Designer/Hardware Tyson Seto-Mook (396)– Project Supervisor Calvin Umeda.
TEAM MECHAZAWA Jeong Bang Riley Ceria Grant Higa.
Design Review Presentation Lost Caf é 66. Introduction of Team Team Leader: Arthur Phanphengdy Members: Quincy Quach Kang Lu Jackson Ng Team Name: Lost.
EE 296-Micromouse Spring 2008 Team: CheeHeePono! Members: Mitchell La Puente Travis Suemori Travis Suemori William Chang William Chang Ashley Tomita Ashley.
Meat and Potatoes Micromouse Team Introduction ► Aaron Fujimoto ► Alex DeAngelis ► Alex Zamora ► Mike Manzano ► Tyson Seto-Mook.
TAKE YOUR JACKET OFF! Proposal Presentation  Members:  Jayson Nakakura: Chassis Design and Fabrication  Kellie Murakami: Circuitry Design and Fabrication.
M & M EE 296 Final Presentation Spring 2004 Presentation Overview Team Member Introduction Project Overview Overall Design Description Final Project.
Micromouse 296 By Lemmings. Introductions  Vicky- coordinator, software/hardware  Bryce-morale booster, software/hardware  Ruffer-time keeper, software/hardware.
1 Team Amaze Me (Micromouse 296/396) Brandon Gibu Chad Higa John Miyajima Justin Ogata (February 9, 2008) Fig. 1.1: Amaze Me 1.0Fig. 1.3: *Herbie the Mousebot*
("/(o_O)\") RaWr! Final Presentation May 9, 2006.
Final Presentation for x96 Projects 9:00 AM – 11:30 AM Thursday, 3 May 2007 Donald Kim Lab, POST 214 Team Raiton Denki No Jutsu Project Micromouse.
Micromouse Spring 2006 K A L The Pied Pipers. The Pied Pipers: Joanne – Programming Ken – Hardware Alyssa – Hardware Introduction of Team and Roles.
Fast D.A.D.I. Team Members Dale Balsis Aaron Tsutsumi Dennis How Ikaika Ramos.
Ramrod IV Micromouse 396. The Team  Andrew Igarashi – Programming  Kevin Li – Hardware  Amy Maruyama – Hardware  Stephen Nakamura – Hardware  Quang.
Meat and Potatoes Micromouse Spring Introduction (Top-Down, Left-Right) –Alex DeAngelis –Mike Manzano –Aaron Fujimoto –Alex Zamora –Tyson Seto-Mook.
Micromouse Team:. Team Members Kanoa Jou Ryan Sato KiWoon Ahn Brett Ikei.
Final Presentation EE 396 – Micromouse Spring 2008 Friday, May 9, 2008 Donald Kim Lab - POST 214.
Preliminary Design Review EE 296 – Micromouse Spring 2007.
Team Asphalt Kellen King Ikaika Ramos Brad Centeno.
Team P.A.C.K men EE 296 Project. Chris Mcleod Hardware Specialist.
MicroMouse Final Presentation Jill Kobashigawa Min Mo Jon Shindo Christy Kaneshiro.
EE 296 Team Da Kine James Cuaresma – Software Wesley Mina - Hardware Regi Morales - Hardware Henry Do - Software.
Preliminary Design Review Micromouse Spring 08 8” Comb.
Preliminary Design Review Micromouse Team: Ocha. Team Members Kanoa Jou Ryan Sato KiWoon Ahn Brett Ikei.
Ramrod IV. The Team  Andrew Igarashi – Programming  Kevin Li – Hardware  Amy Maruyama – Hardware  Stephen Nakamura – Hardware  Quang Ngu – Programming.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
Curry Mouse EE296 Final Presentation Wednesday, May 10, 2006.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
KTD Micromouse OverviewApproach Potential problems Personal Expectations Team Goals.
Micromouse 296 By Lemmings. Introductions  Vicky- coordinator, software oriented  Bryce-morale booster, software oriented  Ruffer-time keeper, hardware.
Team P.A.C.K men EE 296 Project. Chris Mcleod Hardware specialist.
EE 296 TEAM “DA KINE” MICROMOUSE PROJECT PROPOSAL Team members: Software Group - Henry, James Roles : tracking, mapping, guidance, interface Hardware Group.
Final Presentation EE 296 – Micromouse Spring 2007 Friday, May 4, 2007 POST 214.
Curry Mouse EE296 Design Review Presentation Saturday, March 11, 2006.
The Making of Micromouse Yantriki Level 3 Competition Techfest 2004.
Team 4 Shane Sunada – Project Leader Malcolm Menor – Project Manager Nathan Umeda – Technical Supervisor Joseph Longhi – Documentation Final Presentation.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
Final Presentation Micromouse Spring 08 8” Comb.
Preliminary Design Review (PDR) Team Amaze Me. EE 296 Project (MicroMouse) Members –Brandon Gibu –Ah Ram Kim –John-Kalani Miyajima –Justin Ogata Website.
Team: CHEE WHOOO Spring 08. The Team Mitchell La Puente-Project Leader Josh Miyamoto-Software Richard Ordonez-Hardware.
PostBase Automatic Feeder Component Removal Service Training
SCOUTBOTICS Engineering Notebook
SCOUTBOTICS Engineering Notebook
Presentation transcript:

MICROMOUSE 2006 Version: Meat & Potatoes

Alex Zamora Tyson Seto-Mook Mike Manzano Alex de Angelis Aaron Fujimoto The Team:

Initial Objectives Build a wall-hugging mouse -Materials: Sensors: Top down infrared Motors: 1.8 degree stepper motors Processor: Rabbit Card Motor Drivers: The provided Circuit Chassis: Made from sheet metal (Aluminum) -Additional Materials needed (for initial design only): Circuit Boards: Perforated Type Screws for keeping motors and sensor array in place Wheels (expected to come soon) Wire connectors Batteries Resistors, Diodes, solder and other rudimentary parts

The Steps of The Dance… 1.Build the Chassis. 2.Complete Sensor array. 3.Create the Motor Driver Circuit. 4.Create an effective Tracking algorithm. 5.Perfect the Tracking algorithm.

Details -The Motors are off-center because it is anticipated the batteries will be lighter than the Motors. -Final Mouse will have the center of mass aligned on the axis of the geometric center. -Less Chassis out-front permits a shorter sensor array to detect on- coming walls. -Flaps bend up to hold motor in place 2D Plans for Mouse’s Chassis

More details: Sensors -Sensors are expected to be on one side only (for wall hugging mouse). -Sensors will originally be aligned as shown in the diagram on a rectangular strip protruding over edge of mouse’s side. -One sensor, possibly two will be out in the front to detect on coming walls. -Other sensors detect side wall. -Sensors will not be soldered onto sensor array, but will be attached via use of connectors. This way any corrections needed will not require resoldering. -Sensors will be adjustable so that their height over the maze’s wall can be adjusted.

Power 12 V will be needed (of course) A formal decision on the type of batteries to be employed has not been made -Nickel Metal Hydride (possibility) For this initial design, battery selection is not of incredible importance, as we expect to upgrade our wall-hugging mouse in order to make it competitive.

Motors & Motor Drivers As provided by the Kit, 1.8 degree stepper motors will be utilized. Initially, the tutorial provided Motor driver circuit will be used. This circuit may be modified in the future following the demonstration of a capable hugger.

The Expected Mouse The diagram does not include a missing frontal sensor (for the purpose of detecting on Coming walls) Also, the diagram does not include the sensor circuitry that will be ON board the mouse

Phase II Modify the wall Hugging mouse so that it may stand a chance of winning Several Possibilities for sensory system Will need a maze solving algorithm Optimization = Speed

Group Logistics Meeting Times Documentation Division of labor Portal to the World: our Web Page