New Hadron Spectroscopies Stephen L. Olsen University of Hawai’i dc d ccc u d u s d
History: 1930’s: proton & neutron..all we need??? 1950’s: , , , , , … “Had I foreseen that, I would have gone into botany” – Fermi 1960’s: The 8-fold way “3 quarks for Mister Mark” 1970’s add charmed particles 1980’s & beauty 1990’s & (finally?) top chadwick Fermi Gell-Mann RichterTing Lederman PetersJones
Hadron “zoo” mesons baryons
Quarks restore economy ( & rescue future Fermis from Botany?) (& 3 antiquarks) Baryons: qqq Mesons: qq p: u +2/3 p: u -2/3 +:+: d -1/3 u +2/3 d +1/3 u -2/3 d +1//3 u +2/3 -:-: u -2/3 d +1/3 s +1/3 u +2/3 d -1/3 s -1/3 M. Gell-Mann 3 quarks
Fabulously successful, but… quarks are not seen why only qqq and qq combinations? What about spin-statistics?
s -1/3 2 of these s-quarks are in the same quantum state Das ist verboten!!
The strong interaction “charge” of each quark comes in 3 different varieties Y. Nambu O. Greenberg s -1/3 the 3 s -1/3 quarks in the - have different color charges & evade Pauli --
QCD: Gauge theory for color charges generalization of QED + i e A + i i G i QED gauge Xform QCD gauge Xform eight 3x3 SU(3) matrices 8 vector fields (gluons) 1 vector field (photon) scalar charge: e isovector charge: erebegerebeg QED QCD Nambu Gell-Mann & Fritzsch
Attractive configurations ijk e i e j e k i ≠ j ≠ k ij e i ejej same as the rules for combing colors to get white: 3 different primary colors color-complementary color e i e j e k color charges Hence the name: Quantum Chromodynamics
Difference between QED & QCD QED: photons have no charge QCD: gluons carry color charges gluons interact with each other
Vacuum polarization QED vs QCD 2n f 11C A in QCD: C A =3, & this dominates
QED QCD difference Coupling strength distance
Testing the Standard Model QCD X Electro-Weak X QED decrease in s with distance Lamb-shift g-2 Atomic spectra … W, Z & t masses Z width sin W Asymmetries Cross-sections …
Tests of QED and EW sectors Electro-Weak sector ~0.01% level) QED ppb) Example: (g-2)/2| electron Expt: 1,159,652,188.4(4.3)x Theory: 1,159,652,201.4(28)x10 -12
Test QCD with 3-jet events (& deep inelastic scattering) rate for 3-jet events should decrease with E cm gluon ss
“running” s Why are these people smiling?
Probe QCD from other directions non-qq or non-qqq hadron spectroscopies: Pentaquarks: e.g. an S=+1 baryon (only anti-s quark has S=+1) Glueballs: gluon-gluon color singlet states Multi-quark mesons: qq-gluon hybrid mesons dc d c cc u d u s d
Pentaquarks “Seen” in many experiments BaBar CDF but not seen in just as many others High interest: 1 st pentaquark paper has ~500 citations Belle BES
Experimental situation is messy (many contradictory results) NA49 E cm =17 GeV (fixed tgt) (PRL92, : 237+ citations!) COMPASS E =160 GeV (fixed tgt) 1862 ± 2 MeV FWHM = 17 MeV = 5.6 (1862): qqssd 100s of (1530)s but no hint of (1862) hep-ex/
Pentaquark Scoreboard Positive signals Negative results Also: Belle Compass L3 Yes: 17 No: 17
Existence of Pentaquarks is not yet established
multi-quark mesons? B K J/ M( J ) ’ J/ X(3872)
Seen in 4 experiments X(3872) CDF X(3872) D0 hep-ex/
Is the X(3872) a cc meson? These states are already identified 3872 MeV Could it be one of these?
no cc state fits well 3872 c ” h c ’ c1 ’ 2 c2 3 M too low and too small angular dist’n rules out 1 J/ way too small c too small;M( ) wrong c & DD) too small c should dominate SLO hep-ex/
back to square 1 Determine J PC quantum numbers of the X(3872)
Possible J PC values (for J ≤ 2) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed
Possible J PC values (for J ≤ 2) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed
Use 250 fb -1 ~275M BB prs Signal (47 ev) Sidebands (114/10 = 11.4 ev) X J/ ’ J/
Areas of investigation Search for radiative decays Angular correlations in X J/ decays Fits to the M( ) distribution Search for X(3872) D* 0 D 0
Search for X(3872) J/
Kinematic variables CM energy difference: Beam-constrained mass: B K J B K J B B ϒ (4S) E cm /2 ee ee M bc EE
Select B K J/ B K c1 ; c1 J/ X(3872)? 13.6 ± 4.4 X(3872) J/ evts (>5 significance) M( J/ ) Bf(X J/ ) Bf(X J/ ) =0.14 ± 0.05 M bc
Evidence for X(3872) J/ reported last summer hep-ex/ ) 12.4 ± 4.2 evts B-meson yields vs M( ) Br(B 3 J/ ) Br(B 2 J/ ) = 1.0 ± 0.5 Large (near max) Isospin violation!!
Evidence for C=+1 is overwhelming B J/ only allowed for C=+1 same for B ” ”J/ (reported earlier) M( ) for X J/ looks like a
Possible J PC values (C=-1 ruled out) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) ( 2 ) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed
Angular Correlations K J/ J=0 X 3872 J z =0
Strategy: for each J PC, find a distrib 0 if we see any events there, we can rule it out Rosner (PRD ) Bugg (PRD )
: sin 2 sin 2 safe to rule out 0 -+ 2 /dof=18/9 |cos | |cos | 2 /dof=34/9
0 ++ ll In the limit where X(3872), , & J/ rest frames coincide: d /dcos l sin 2 l |cos l | rule out 0 ++ 2 /dof = 41/9
1 ++ ll 1 ++ : sin 2 l sin 2 K 1 ++ looks okay! compute angles in X(3872) restframe |cos l | 2 /dof = 11/9 |cos | 2 /dof = 5/9
Possible J PC values (0 -+ & 0 ++ ruled out) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) ( 2 ) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed
Fits to the M( ) Distribution X J/ in P-wave has a q* 3 centrifugal barrier X J/ q*
M( ) can distinguish -J/ S- & P-waves S-wave: 2 / dof = 43/39 P-wave: 2 / dof = 71/39 q* roll-off q* 3 roll-off (CL=0.1%) (CL= 28%) Shape of M( ) distribution near the kinematic limit favors S-wave
Possible J PC values (J -+ ruled out) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) ( 2 ) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed
Search for X D 0 D 0 0
Select B D 0 D 0 0 events | E| 22±7 signal evts Bf(B KX)Bf(X D*D)=2.2 ± 0.7 ± 0.4x10 -4 Preliminary D *0 D 0 0 ?
X DD rules out : DD* in an S-wave q* 2 ++ : DD* (or DD ) in a D-wave q* 5 Strong threshold suppression
Possible J PC values (2 ++ ruled out) 0 -- exotic violates parity 0 -+ ( c ” ) 0 ++ DD allowed ( c0 ’ ) 0 +- exotic DD allowed DD allowed ( (3S)) 1 -+ exotic DD allowed 1 ++ ( c1 ’ ) 1 +- (h c ’ ) ( 2 ) ( c2 ) 2 ++ DD allowed c2 ’ ) 2 +- exotic DD allowed 1 ++
a 1 ++ cc state? 1 ++ c1 ’ –Mass is off – c1 ’ J/ violates Isospin, should be suppressed (X J/ )/ (X J/ ) Theory: ~ 30 Expt: 0.14 ± 0.05 c1 ’ component of the X(3872) is ≤ few %
Intriguing fact M X3872 =3872 ± 0.6 ± 0.5 MeV m D0 + m D0* = ± 1.0 MeV lowest mass charmed meson lowest mass spin=1 charmed meson X(3872) is very near DD* threshold. is it somehow related to that?
hh bound states (hadronium)? pn DD* deuteron: loosely bound 3-q color singlets with M d = m p +m n - Hadronium (dueson) : loosely bound q-q color singlets with M = m D + m D* - attractive nuclear force attractive force?? There is lots of literature about this possibility N. Tornqvist hep-ph/
X(3872) = D 0 D* 0 bound state? J PC = 1 ++ is favored M≈m D0 + m D0* Maximal Isospin violation is natural: |I=1; I z = 0> =1/ 2(|D + D* - >+ |D 0 D* 0 >) |I=0; I z = 0> =1/ 2(|D + D* - > - |D 0 D* 0 >) |D 0 D* 0 > = 1/ 2( |10> - |00>) (X J/ ) < (X J/ ) is expected Equal mixture of I=1 & I =0 Swanson PLB 598, 197 (2004) Tornqvist PLB 590, 209 (2004) Swanson PLB 588, 189 (2004)
X(3872) conclusion Not a cc state Most likely a D 0 D* 0 bound state CC d c d c 1 st well established tetraquark
Are there others? Look at other B decays hadrons+J/ B K J/ B K J/ B K J/ B K …
B K J/ in Belle “Y(3940)” M≈3940 ± 11 MeV ≈ 92 ± 24 MeV
Y(3940): What is it? Charmonium? –Conventional wisdom: J/ should not be a discovery mode for a cc state with mass above DD & DD* threshold! Some kind of -J/ threshold interaction? –the J/ is not surrounded by brown muck; can it act like an ordinary hadron? J/
Y(3940): What is it? (continued) another tetraquark? –M ≈ 2m Ds –not seen in Y J/ ( contains ss) –width too large?? –need to search for Y(3949) D S D S s c s c ?? PRL 93, M( J/ )
Y(3940): What is it? (continued) cc-gluon hybrid? –predicted by lattice QCD, –decays to DD and DD* are suppressed –large hadron+J/ widths are predicted –masses expected to be 4.3 ~ 4.4 GeV (higher than what we see) cc
Summary X(3872): –J PC established as 1 ++ –cc component is small (≤ few %) –all measured properties are consistent with a D 0 D* 0 bound state 1 st established tetraquark! Y(3940): –No obvious cc assignment –tetraquark seems unlikely –cc-gluon hybrid? –Lots to do: determine J PC search for other decay channels (DD*, D s D s, …) dc d c cc
Other hadronium states? M=1859 MeV/c 2 < 30 MeV/c 2 (90% CL) J/ pp in the BES expt M(pp)-2m p (GeV) acceptance 2 /dof=56/56 fitted peak location 10 25 J.Z.Bai PRL 91,022001(2003)
The case of the mystery meson Stephen L. Olsen University of Hawai’i
SU(3) S>0 S<0 baryons octets & decuplets Meson octets
Hence the name: Quantum Chromo Dynamics qqqqqq qqqqqq
confinement
Grand Unification? s QED EW
“Data, I need data. I can’t make bricks without clay” fb -1 /day
Strategy: for each J PC, find a distrib 0 if we see any events there, we can rule it out Ex: 1 -- : sin 2 K K compute angles in J/ restframe D.V. Bugg hep-ph/ v2 ’ 2 /dof = 8.9/9 Use ’ to check accept. ’ is 1 --
|cos Kl | for X(3872) events X(3872) is not 1 -- ! expect 2~3evts/bin background scaled from sidebands fit with sin 2 Kl + bkgd 2 /dof = 45/9 see 8 evts/bin
1 +- and 2 -- use J/ helicity angle J/ K X J/ J/ |cos J/ | For the ’ J/ , this should be ~flat
1 +- and 2 -- can rule out 1 +- (Cl < 0.1%) |cos J/ | 1 +- : sin 2 J/ 2 -- : sin 2 J/ cos 2 J/ 2 /dof=32/9 2 /dof=20/9 |cos J/ |
Narrow multi-quark mesons? D sJ (2317) & D sJ (2457) X(3872) J/ CLEO M(D s ) M(D s * ) M( J )
What are the D sJ states? Belle found B D D sJ (2317) D D sJ (2457) and D sJ (2457) D s
Angular analysis for B D D sJ D sJ D s ( ) J=1 J=0 D sJ (2317) D s 0 J=1 J=2 D sJ (2460) D s z J z =0 D sJ (2317) = 0 + D sJ (2547) = 1 + J=0
D sJ fit into cs spectrum (with a mass shift) D sJ (2547) = 1 + D sJ (2317) = 0 +
D sJ states are likely ordinary L=1 cs mesons Theory got the masses wrong