New Hadron Spectroscopies Stephen L. Olsen University of Hawai’i dc d ccc u d u s d.

Slides:



Advertisements
Similar presentations
Determination of the J PC of the X(3872) (Reviews of BN800) S.L. Olsen & S.K. Choi Apr, 2005 Belle General Meeting.
Advertisements

Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
X(3872) Review T.Aushev LPHE seminar. 8 February 2010T.Aushev, LPHE seminar2 Introduction Era of the new family of particles, named XYZ, started from.
Evidence for Exotic Mesons Belle Workshop on light flavors & chiral dynamics 北 大 Sept 29-30,2007 Stephen Olsen U. of Hawai’i & 高能所 北京 BaBar.
Searching for new forms of hadronic matter Stephen L. Olsen University of Hawai’i & 高能物理所 北京 Wuhan 武汉 10/15/07.
Meson Spectroscopy at B factories 8 GeV e GeV e + BaBar Belle.
Exotic Mesons from an experimental perspective S. Olsen 贵州大学 June
Determination of the J PC of the X(3872) (Reviews of BN800) S.L. Olsen & S.K. Choi Apr 06, 2005 Belle General Meeting.
新强子态 Stephen Olsen 夏威夷 大学 & 高能所 北京 New types of hadrons HEP10 南京大学 April 26, 2008.
New Results and Prospects of Light Hadron Spectroscopy Shan JIN Institute of High Energy Physics (IHEP) Presented by Yi-Fang Wang.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
Update on X(3872) J PC determination Soo-Kyung Choi Stephen L. Olsen Gyeongsang Univ. Univ. of Hawai’i April Fool’s day 2005 Quarkonium group meeting In.
Homeless mesons X3872 Y3940 Y4260 Stephen L. Olsen University of Hawai’i.
Pinning down the J PC values of the X(3872) K. Miyabayashi for S.K. Choi & S.L. Olsen Feb, 2005 Belle Analysis & Software Meeting.
New types of sub-atomic particles Stephen L. Olsen University of Hawai’i uc u ccc u d u s d.
Non-standard mesons Stephen L. Olsen University of Hawai’i Representing Belle Fermilab seminar May 10, 2005.
New Particles X(3872) Y(4260) X(3940) University of Hawai’i Future of Heavy Flavors ИТЗФ 7/23-24/06 Z(3930) Y(3940) Ѕтефан Олавич ????
Update on angle studies of the X(3872) S.K. Choi & S.L. Olsen Jan 21, 2005 Belle charmonium group video Meeting (Jan 20 in Hawaii) Preliminary!!!!!
Quarks, the dreams that stuff is made of Micro-world Macro-world Lect 19.
NTU colloquium June 11, 2007 S.L. Olsen U of Hawai’i 高能所 北京.
Searches for exotic mesons Stephen L. Olsen University of Hawai’i DOE site visit Aug 22, 2005 cc u d u u d u uc u c Multi-quark molecules qq-gluon hybrids.
Stephen Olsen U. of Hawai’i & 高能所 北京 YZ e otic X Mesons Sookyung Choi Scientist of the month Aug 2004, Korea.
Stephen L. Olsen Univ. of Hawaii A narrow pp enhancement near M pp  2m p in J/    pp BES Representing: Beijing, China.
Workshop honoring the 70th birthday of SCADRON 70 Workshop on "Scalar Mesons and Related Topics" February 11-16, 2008, at IST in Lisbon, Portugal RECENT.
S.L.Olsen Hawai’i Exotic Hadrons WS Nara May 27,2005 Non-standard mesons S.L.Olsen Hawai’i.
The hidden charm of hadrons Stephen L. Olsen University of Hawai’i Representing Belle Invited talk at the Tampa APS/DPF meeting, April 19, 2005.
July 7, 2008SLAC Annual Program ReviewPage 1 New Charmonium-like States Arafat Gabareen Mokhtar SLAC Group-EC (B A B AR ) DOE Review Meeting July 8 th,
Nonstandard mesons Stephen L. Olsen University of Hawai’i cc u d u u d u uc u c tetra-quarks meson-meson molecules q q – q q diquark pairs q q-gluon hybrids.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
P Spring 2002 L14Richard Kass Quantum Chromodynamics Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD is a non-abelian gauge.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
P Spring 2003 L13Richard Kass Quantum Chromodynamics Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD is a non-abelian gauge.
From Luigi DiLella, Summer Student Program
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
Hadron Spectroscopy from Lattice QCD
Non-standard mesons in BES III?
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
Zijin Guo Univ. of Hawaii Representing BES Collaboration J/    pp and  BES Beijing, China.
cc spectroscopy at elle S.L.Olsen Hawaii QWG 2004 Worksop IHEP Beijing _.
New Observations on Light Hadron Spectroscopy at BESIII Yanping HUANG For BESIII Collaboration Institute of High Energy Physics (IHEP) ICHEP2010, Paris,
Andrzej Bożek (IFJ PAN, Kraków) B hadron decays to open charm production in B-factories BEACH B hadron decays to open charm at B-factories A.Bożek.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
Excited Charmonium in e + e - annihilation and B decay K-T Chao Peking University QWG Workshop, Beijing, Oct , 2004.
New Resonances at Belle Jolanta Brodzicka INP Kraków, for the Belle Collaboration ICFP 2005 October 4 th, 2005 Taiwan Outline  ‘ old’ X(3872) properties.
Φ→Ψ, BINP, Novosibirsk.2011P. Pakhlov Phys. Lett. B702, 139 (2011) Charged charmonium-like states as rescattering effects in B  D sJ D (*) P. Pakhlov.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
The meson landscape Scalars and Glue in Strong QCD New states beyond Weird baryons: pentaquark problems “Diquarks,Tetraquarks, Pentaquarks and no quarks”
1 Hadron Spectroscopy at BABAR BY Usha Mallik (University of Iowa) Representing The BaBar Collaboration The International Light-Cone Workshop July 7, 2005.
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
B→ X(3872)K and Z(4430)K at Belle Kenkichi Miyabayashi Nara Women’s Univ. For Belle collaboration QWG2007 at DESY 2007/Oct./19th.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Belle Hawaii activities in Belle New particles in BES & Belle S. L. Olsen.
1 Heavy Flavor Spectroscopy at the Tevatron Ilya Kravchenko MI T.
Maurizio Lo Vetere University of Genova & INFN
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Introduction to DsJ Analysis and D(*)D(*) reconstruction at CDF
DsJ* ‘s & charmed strange baryons at Belle
Section IX - Quark Model of Hadrons
Section VII - QCD.
Pentaquark Searches and DsJ Studies in BaBar
New States Containing Charm at BABAR
Presentation transcript:

New Hadron Spectroscopies Stephen L. Olsen University of Hawai’i dc d ccc u d u s d

History: 1930’s: proton & neutron..all we need??? 1950’s: , , , , ,  … “Had I foreseen that, I would have gone into botany” – Fermi 1960’s: The 8-fold way “3 quarks for Mister Mark” 1970’s add charmed particles 1980’s & beauty 1990’s & (finally?) top chadwick Fermi Gell-Mann RichterTing Lederman PetersJones

Hadron “zoo” mesons baryons

Quarks restore economy ( & rescue future Fermis from Botany?) (& 3 antiquarks) Baryons: qqq Mesons: qq p: u +2/3 p: u -2/3 +:+: d -1/3 u +2/3 d +1/3 u -2/3 d +1//3 u +2/3 -:-: u -2/3 d +1/3 s +1/3 u +2/3 d -1/3 s -1/3 M. Gell-Mann 3 quarks

Fabulously successful, but… quarks are not seen why only qqq and qq combinations? What about spin-statistics?

 s -1/3 2 of these s-quarks are in the same quantum state Das ist verboten!!

The strong interaction “charge” of each quark comes in 3 different varieties Y. Nambu O. Greenberg s -1/3 the 3 s -1/3 quarks in the  - have different color charges & evade Pauli --

QCD: Gauge theory for color charges generalization of QED    + i e A    + i  i G i QED gauge Xform QCD gauge Xform eight 3x3 SU(3) matrices 8 vector fields (gluons) 1 vector field (photon) scalar charge: e isovector charge: erebegerebeg QED QCD Nambu Gell-Mann & Fritzsch

Attractive configurations  ijk e i e j e k i ≠ j ≠ k  ij e i ejej same as the rules for combing colors to get white: 3 different primary colors color-complementary color e i e j e k  color charges Hence the name: Quantum Chromodynamics

Difference between QED & QCD QED: photons have no charge QCD: gluons carry color charges gluons interact with each other

Vacuum polarization QED vs QCD 2n f 11C A in QCD: C A =3, & this dominates

QED  QCD difference  Coupling strength distance

Testing the Standard Model QCD X Electro-Weak X QED decrease in  s with distance Lamb-shift g-2 Atomic spectra … W, Z & t masses Z width sin   W Asymmetries Cross-sections …

Tests of QED and EW sectors Electro-Weak sector ~0.01% level) QED ppb) Example: (g-2)/2| electron Expt: 1,159,652,188.4(4.3)x Theory: 1,159,652,201.4(28)x10 -12

Test QCD with 3-jet events (& deep inelastic scattering) rate for 3-jet events should decrease with E cm gluon ss

“running”  s Why are these people smiling?

Probe QCD from other directions non-qq or non-qqq hadron spectroscopies: Pentaquarks: e.g. an S=+1 baryon (only anti-s quark has S=+1) Glueballs: gluon-gluon color singlet states Multi-quark mesons: qq-gluon hybrid mesons dc d c cc u d u s d

Pentaquarks “Seen” in many experiments BaBar CDF but not seen in just as many others High interest: 1 st pentaquark paper has ~500 citations Belle BES

Experimental situation is messy (many contradictory results) NA49 E cm =17 GeV (fixed tgt) (PRL92, : 237+ citations!) COMPASS  E  =160 GeV (fixed tgt) 1862 ± 2 MeV FWHM = 17 MeV  = 5.6  (1862): qqssd 100s  of  (1530)s but no hint of  (1862) hep-ex/

Pentaquark Scoreboard Positive signals Negative results Also: Belle Compass L3 Yes: 17 No: 17

Existence of Pentaquarks is not yet established

multi-quark mesons? B  K     J/  M(  J  )  ’      J/  X(3872)

Seen in 4 experiments X(3872) CDF X(3872) D0 hep-ex/

Is the X(3872) a cc meson? These states are already identified 3872 MeV Could it be one of these?

no cc state fits well 3872  c ” h c ’  c1 ’  2  c2  3 M too low and  too small angular dist’n rules out 1   J/  way too small  c   too small;M(     ) wrong  c  & DD) too small  c should dominate SLO hep-ex/

back to square 1 Determine J PC quantum numbers of the X(3872)

Possible J PC values (for J ≤ 2) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

Possible J PC values (for J ≤ 2) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

Use 250 fb -1  ~275M BB prs Signal (47 ev) Sidebands (114/10 = 11.4 ev) X       J/   ’      J/ 

Areas of investigation Search for radiative decays Angular correlations in X   J/  decays Fits to the M(  ) distribution Search for X(3872)  D* 0 D 0

Search for X(3872)   J/ 

Kinematic variables CM energy difference: Beam-constrained mass:  B  K     J  B  K     J  B   B ϒ (4S) E cm /2 ee ee M bc EE

Select B  K  J/  B  K  c1 ;  c1   J/  X(3872)? 13.6 ± 4.4 X(3872)   J/  evts (>5  significance) M(  J/  ) Bf(X   J/  ) Bf(X   J/  ) =0.14 ± 0.05 M bc

Evidence for X(3872)        J/   reported last summer hep-ex/ ) 12.4 ± 4.2 evts B-meson yields vs M(       ) Br(B  3  J/  ) Br(B  2  J/  ) = 1.0 ± 0.5 Large (near max) Isospin violation!!

Evidence for C=+1 is overwhelming B   J/  only allowed for C=+1 same for B  ”  ”J/  (reported earlier) M(  ) for X      J/  looks like a 

Possible J PC values (C=-1 ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) (  2 ) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

Angular Correlations K  J/  J=0 X 3872 J z =0

Strategy: for each J PC, find a distrib  0 if we see any events there, we can rule it out Rosner (PRD ) Bugg (PRD )

: sin 2  sin 2  safe to rule out 0 -+    2 /dof=18/9 |cos  | |cos  |  2 /dof=34/9

0 ++ ll In the limit where X(3872), , & J/  rest frames coincide: d  /dcos  l   sin 2  l  |cos  l  | rule out 0 ++  2 /dof = 41/9

1 ++ ll  1 ++ : sin 2  l sin 2  K 1 ++ looks okay! compute angles in X(3872) restframe |cos  l |  2 /dof = 11/9 |cos  |  2 /dof = 5/9

Possible J PC values (0 -+ & 0 ++ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) (  2 ) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

Fits to the M(  ) Distribution X   J/  in P-wave has a q* 3 centrifugal barrier X J/   q*

M(  ) can distinguish  -J/  S- & P-waves S-wave:  2 / dof = 43/39 P-wave:  2 / dof = 71/39 q* roll-off q* 3 roll-off (CL=0.1%) (CL= 28%) Shape of M(  ) distribution near the kinematic limit favors S-wave

Possible J PC values (J -+ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) (  2 ) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

Search for X  D 0 D 0  0

Select B  D 0 D 0  0 events |  E| 22±7 signal evts Bf(B  KX)Bf(X  D*D)=2.2 ± 0.7 ± 0.4x10 -4 Preliminary D *0  D 0  0 ?

X  DD  rules out : DD* in an S-wave  q* 2 ++ : DD* (or DD  ) in a D-wave  q* 5 Strong threshold suppression

Possible J PC values (2 ++ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) (  2 ) (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed 1 ++

a 1 ++ cc state? 1 ++   c1 ’ –Mass is off –  c1 ’   J/  violates Isospin, should be suppressed  (X   J/  )/  (X   J/  ) Theory: ~ 30 Expt: 0.14 ± 0.05  c1 ’ component of the X(3872) is ≤ few %

Intriguing fact M X3872 =3872 ± 0.6 ± 0.5 MeV m D0 + m D0* = ± 1.0 MeV lowest mass charmed meson lowest mass spin=1 charmed meson X(3872) is very near DD* threshold. is it somehow related to that?

hh bound states (hadronium)? pn DD* deuteron: loosely bound 3-q color singlets with M d = m p +m n -  Hadronium (dueson) : loosely bound q-q color singlets with M = m D + m D* -  attractive nuclear force attractive force?? There is lots of literature about this possibility   N. Tornqvist hep-ph/

X(3872) = D 0 D* 0 bound state? J PC = 1 ++ is favored M≈m D0 + m D0* Maximal Isospin violation is natural: |I=1; I z = 0> =1/  2(|D + D* - >+ |D 0 D* 0 >) |I=0; I z = 0> =1/  2(|D + D* - > - |D 0 D* 0 >)  |D 0 D* 0 > = 1/  2( |10> - |00>)  (X   J/  ) <  (X   J/  ) is expected Equal mixture of I=1 & I =0 Swanson PLB 598, 197 (2004) Tornqvist PLB 590, 209 (2004) Swanson PLB 588, 189 (2004)

X(3872) conclusion Not a cc state Most likely a D 0 D* 0 bound state CC d c d c 1 st well established tetraquark

Are there others? Look at other B decays  hadrons+J/   B  K  J/   B  K  J/   B  K  J/   B  K …

B  K  J/  in Belle “Y(3940)” M≈3940 ± 11 MeV  ≈ 92 ± 24 MeV

Y(3940): What is it? Charmonium? –Conventional wisdom:  J/  should not be a discovery mode for a cc state with mass above DD & DD* threshold! Some kind of  -J/  threshold interaction? –the J/  is not surrounded by brown muck; can it act like an ordinary hadron? J/  

Y(3940): What is it? (continued) another tetraquark? –M ≈ 2m Ds –not seen in Y   J/  (  contains ss) –width too large?? –need to search for Y(3949)  D S D S s c s c ?? PRL 93, M(  J/  )

Y(3940): What is it? (continued) cc-gluon hybrid? –predicted by lattice QCD, –decays to DD and DD* are suppressed –large hadron+J/  widths are predicted –masses expected to be 4.3 ~ 4.4 GeV (higher than what we see) cc

Summary X(3872): –J PC established as 1 ++ –cc component is small (≤ few %) –all measured properties are consistent with a D 0 D* 0 bound state  1 st established tetraquark! Y(3940): –No obvious cc assignment –tetraquark seems unlikely –cc-gluon hybrid? –Lots to do: determine J PC search for other decay channels (DD*, D s D s, …) dc d c cc

Other hadronium states? M=1859 MeV/c 2  < 30 MeV/c 2 (90% CL) J/    pp in the BES expt M(pp)-2m p (GeV) acceptance  2 /dof=56/56 fitted peak location  10  25 J.Z.Bai PRL 91,022001(2003)

The case of the mystery meson Stephen L. Olsen University of Hawai’i

SU(3) S>0 S<0 baryons octets & decuplets Meson octets

Hence the name: Quantum Chromo Dynamics qqqqqq qqqqqq

confinement

Grand Unification? s QED EW

“Data, I need data. I can’t make bricks without clay” fb -1 /day

Strategy: for each J PC, find a distrib  0 if we see any events there, we can rule it out  Ex: 1 -- : sin 2  K  K compute angles in J/  restframe D.V. Bugg hep-ph/ v2  ’  2 /dof = 8.9/9 Use  ’ to check accept.  ’ is 1 --

|cos  Kl | for X(3872) events X(3872) is not 1 -- ! expect 2~3evts/bin background scaled from sidebands fit with sin 2  Kl + bkgd  2 /dof = 45/9 see 8 evts/bin

1 +- and 2 -- use J/  helicity angle  J/  K X J/   J/  |cos  J/  | For the  ’      J/ , this should be ~flat

1 +- and 2 -- can rule out 1 +- (Cl < 0.1%) |cos  J/  | 1 +- : sin 2  J/  2 -- : sin 2  J/  cos 2  J/   2 /dof=32/9  2 /dof=20/9 |cos  J/  |

Narrow multi-quark mesons? D sJ (2317) & D sJ (2457) X(3872)   J/  CLEO M(D s  ) M(D s *  ) M(  J  )

What are the D sJ states? Belle found B  D D sJ (2317)  D D sJ (2457) and D sJ (2457)   D s

Angular analysis for B  D D sJ D sJ  D s  (  ) J=1 J=0 D sJ (2317)  D s  0 J=1 J=2 D sJ (2460)  D s  z J z =0 D sJ (2317) = 0 + D sJ (2547) = 1 + J=0 

D sJ fit into cs spectrum (with a mass shift) D sJ (2547) = 1 + D sJ (2317) = 0 +

D sJ states are likely ordinary L=1 cs mesons Theory got the masses wrong