Query Rewrite: Predicate Pushdown (through grouping) Select bid, Max(age) From Reserves R, Sailors S Where R.sid=S.sid GroupBy bid Having Max(age) > 40.

Slides:



Advertisements
Similar presentations
Overview of Query Evaluation (contd.) Chapter 12 Ramakrishnan and Gehrke (Sections )
Advertisements

Query Optimization Reserves Sailors sid=sid bid=100 rating > 5 sname (Simple Nested Loops) Imperative query execution plan: SELECT S.sname FROM Reserves.
Query Optimization May 31st, Today A few last transformations Size estimation Join ordering Summary of optimization.
Query Optimization CS634 Lecture 12, Mar 12, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Query Optimization Chapters 14.
Query Optimization Goal: Declarative SQL query
1 Overview of Query Evaluation Chapter Objectives  Preliminaries:  Core query processing techniques  Catalog  Access paths to data  Index matching.
1 Relational Query Optimization Module 5, Lecture 2.
Relational Query Optimization CS186, Fall 2005 R & G Chapters 12/15.
Relational Query Optimization 198:541. Overview of Query Optimization  Plan: Tree of R.A. ops, with choice of alg for each op. Each operator typically.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
1 Relational Query Optimization Yanlei Diao UMass Amherst March 8 and 13, 2007 Slide Content Courtesy of R. Ramakrishnan, J. Gehrke, and J. Hellerstein.
Relational Query Optimization (this time we really mean it)
Relational Query Optimization CS 186, Spring 2006, Lectures16&17 R & G Chapter 15 It is safer to accept any chance that offers itself, and extemporize.
Query Optimization Chapter 15. Query Evaluation Catalog Manager Query Optmizer Plan Generator Plan Cost Estimator Query Plan Evaluator Query Parser Query.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Overview of Query Evaluation R&G Chapter 12 Lecture 13.
Relational Query Optimization
Query Optimization: Transformations May 29 th, 2002.
Query Optimization Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2003 Slide content courtesy Raghu Ramakrishnan.
Query Optimization II R&G, Chapters 12, 13, 14 Lecture 9.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 1, 2005 Some slide content derived.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Query Optimization Chapter 15.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 2, 2004 Some slide content derived.
Overview of Query Optimization v Plan : Tree of R.A. ops, with choice of alg for each op. –Each operator typically implemented using a `pull’ interface:
Relational Query Optimization Implementation of single Relational Operations Choices depend on indexes, memory, stats,… Joins –Blocked nested loops: simple,
1.1 CAS CS 460/660 Introduction to Database Systems Query Optimization.
Query Optimization, part 2 CS634 Lecture 13, Mar Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Overview of Implementing Relational Operators and Query Evaluation
Introduction to Database Systems1 Relational Query Optimization Query Processing: Topic 2.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 12: Overview.
Relational Query Optimization Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
Query Optimization. overview Histograms A histogram is a data structure maintained by a DBMS to approximate a data distribution Equiwidth vs equidepth.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
1 Overview of Query Evaluation Chapter Overview of Query Evaluation  Plan : Tree of R.A. ops, with choice of alg for each op.  Each operator typically.
Relational Query Optimization R & G Chapter 12/15.
Database systems/COMP4910/Melikyan1 Relational Query Optimization How are SQL queries are translated into relational algebra? How does the optimizer estimates.
Query Optimization Imperative query execution plan: Declarative SQL query Ideally: Want to find best plan. Practically: Avoid worst plans! Goal: Purchase.
Query Optimization March 10 th, Very Big Picture A query execution plan is a program. There are many of them. The optimizer is trying to chose a.
1 Relational Query Optimization Chapter Query Blocks: Units of Optimization  An SQL query is parsed into a collection of query blocks :  An SQL.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
CPSC404, Laks V.S. Lakshmanan1 Relational Query Optimization Chapter 15 Ramakrishnan & Gehrke (Sections )
Introduction to Query Optimization, R. Ramakrishnan and J. Gehrke 1 Introduction to Query Optimization Chapter 13.
Relational Query Optimization R & G Chapter 12/15.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction to Query Optimization Chapter 13.
1.1 CAS CS 460/660 Introduction to Database Systems Query Optimization.
1 Database Systems ( 資料庫系統 ) December 13, 2004 Chapter 15 By Hao-hua Chu ( 朱浩華 )
Implementation of Database Systems, Jarek Gryz1 Relational Query Optimization Chapters 12.
Cost Estimation For each plan considered, must estimate cost: –Must estimate cost of each operation in plan tree. Depends on input cardinalities. –Must.
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
Database Applications (15-415) DBMS Internals- Part X Lecture 21, April 3, 2016 Mohammad Hammoud.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction To Query Optimization and Examples Chpt
Query Optimization. overview Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g., SAP admin) DBA,
CS222P: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Introduction to Query Optimization
Introduction to Database Systems
Query Optimization Overview
Relational Query Optimization
Query Optimization Overview
Query Optimization.
Relational Query Optimization
Overview of Query Evaluation
Overview of Query Evaluation
Database Applications (15-415) DBMS Internals- Part X Lecture 22, April 3, 2018 Mohammad Hammoud.
Relational Query Optimization (this time we really mean it)
Overview of Query Evaluation
CS222: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Relational Query Optimization
Relational Query Optimization
Presentation transcript:

Query Rewrite: Predicate Pushdown (through grouping) Select bid, Max(age) From Reserves R, Sailors S Where R.sid=S.sid GroupBy bid Having Max(age) > 40 Select bid, Max(age) From Reserves R, Sailors S Where R.sid=S.sid and S.age > 40 GroupBy bid For each boat, find the maximal age of sailors who’ve reserved it. Advantage: the size of the join will be smaller. Requires transformation rules specific to the grouping/aggregation operators. Won’t work if we replace Max by Min.

Example We don’t need the tuples with age less than 40. Sailors:

Query Rewrite: Pushing predicates up Create View V1 AS Select rating, Min(age) From Sailors S Where S.age < 20 GroupBy rating Create View V2 AS Select sid, rating, age, date From Sailors S, Reserves R Where R.sid=S.sid Select sid, date From V1, V2 Where V1.rating = V2.rating and V1.age = V2.age Sailing wizz dates: when did the youngest of each sailor level rent boats? Can’t push any predicates down.

Query Rewrite: Predicate Move-around Create View V1 AS Select rating, Min(age) From Sailors S Where S.age < 20 GroupBy rating Create View V2 AS Select sid, rating, age, date From Sailors S, Reserves R Where R.sid=S.sid Select sid, date From V1, V2 Where V1.rating = V2.rating and V1.age = V2.age, age < 20 Sailing wizz dates: when did the youngest of each sailor level rent boats? First, move predicates up the tree.

Query Rewrite: Predicate Move-around Create View V1 AS Select rating, Min(age) From Sailors S Where S.age < 20 GroupBy rating Create View V2 AS Select sid, rating, age, date From Sailors S, Reserves R Where R.sid=S.sid, and S.age < 20. Select sid, date From V1, V2 Where V1.rating = V2.rating and V1.age = V2.age, and V1.age < 20 Sailing wizz dates: when did the youngest of each sailor level rent boats? First, move predicates up the tree. Then, move them down.

Nested Queries Nested block is optimized independently, with the outer tuple considered as providing a selection condition. Outer block is optimized with the cost of `calling’ nested block computation taken into account. Implicit ordering of these blocks means that some good strategies are not considered. The non-nested version of the query is typically optimized better. SELECT S.sname FROM Sailors S WHERE EXISTS ( SELECT * FROM Reserves R WHERE R.bid=103 AND R.sid=S.sid) Nested block to optimize: SELECT * FROM Reserves R WHERE R.bid=103 AND S.sid= outer value Equivalent non-nested query: SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid=R.sid AND R.bid=103

Query Rewrite Summary The optimizer can use any semantically correct rule to transform one query to another. Rules try to: –move constraints between blocks (because each will be optimized separately) –Unnest blocks Especially important in decision support applications where queries are very complex.

Plans for Single-Relation Queries (Prep for Join ordering) Task: create a query execution plan for a single Select-project-join-group-by block. Key idea: consider each possible access path to the relevant tuples of the relation. Choose the cheapest one. The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate computation).

Example If we have an Index on rating: –(1/NKeys(I)) * NTuples(R) = (1/10) * tuples retrieved. –Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (50+500) pages are retrieved (= 55). –Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) * ( ) pages are retrieved. If we have an index on sid: –Would have to retrieve all tuples/pages. With a clustered index, the cost is Doing a file scan: we retrieve all file pages (500). SELECT S.sid FROM Sailors S WHERE S.rating=8

Determining Join Order In principle, we need to consider all possible join orderings: As the number of joins increases, the number of alternative plans grows rapidly; we need to restrict the search space. System-R: consider only left-deep join trees. –Left-deep trees allow us to generate all fully pipelined plans:Intermediate results not written to temporary files. Not all left-deep trees are fully pipelined (e.g., SM join). B A C D B A C D C D B A

Enumeration of Left-Deep Plans Enumerated using N passes (if N relations joined): –Pass 1: Find best 1-relation plan for each relation. –Pass 2: Find best way to join result of each 1-relation plan (as outer) to another relation. (All 2-relation plans.) –Pass N: Find best way to join result of a (N-1)-relation plan (as outer) to the N’th relation. (All N-relation plans.) For each subset of relations, retain only: –Cheapest plan overall, plus –Cheapest plan for each interesting order of the tuples.

Enumeration of Plans (Contd.) ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an `interestingly ordered’ plan or an additional sorting operator. An N-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE have been used up. –i.e., avoid Cartesian products if possible. In spite of pruning plan space, this approach is still exponential in the # of tables. If we want to consider all (bushy) trees, we need only a slight modification to the algorithm.

Example Pass 1: (essentially, access-path selection) –Sailors: B+ tree matches rating>5, and is probably cheapest. However, if this selection is expected to retrieve a lot of tuples, and index is unclustered, file scan may be cheaper. Still, B+ tree plan kept (tuples are in rating order). –Reserves: B+ tree on bid matches bid=100; cheapest. Pass 2: We consider each plan retained from Pass 1 as the outer, and consider how to join it with the (only) other relation. u e.g., Reserves as outer: Hash index can be used to get Sailors tuples that satisfy sid = outer tuple’s sid value. Sailors: B+ tree on rating Hash on sid Reserves: B+ tree on bid Reserves Sailors sid=sid bid=100 rating > 5 sname

Cost Estimation For each plan considered, must estimate cost: –Must estimate cost of each operation in plan tree. Depends on input cardinalities. –Must estimate size of result for each operation in tree! Use information about the input relations. For selections and joins, assume independence of predicates. We’ll discuss the System R cost estimation approach. –Very inexact, but works ok in practice. –More sophisticated techniques known now.

Statistics and Catalogs Need information about the relations and indexes involved. Catalogs typically contain at least: –# tuples (NTuples) and # pages (NPages) for each relation. –# distinct key values (NKeys) and NPages for each index. –Index height, low/high key values (Low/High) for each tree index. Catalogs updated periodically. –Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok. More detailed information (e.g., histograms of the values in some field) are sometimes stored.

Size Estimation and Reduction Factors Consider a query block: Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause. Reduction factor (RF) associated with each term reflects the impact of the term in reducing result size. Result cardinality = Max # tuples * product of all RF’s. –Implicit assumption that terms are independent! –Term col=value has RF 1/NKeys(I), given index I on col –Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2)) –Term col>value has RF (High(I)-value)/(High(I)-Low(I)) SELECT attribute list FROM relation list WHERE term 1 AND... AND term k