Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)

Slides:



Advertisements
Similar presentations
Searching for light dark matter through neutrino signature 林貴林 IOP, NCTU (1). F.-F. Lee and GLL, Phys. Rev. D85, (2012) (2). F.-F. Lee, GLL, Sming.
Advertisements

Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Neutrino physics, experiments I – Neutrino Mass João dos Anjos Centro Brasileiro de Pesquisas Físicas.
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
Sergio Palomares-RuizAugust 28, 2006 TeV  -rays and from nuclei photodissociation TeV Particle Astrophysics II August 2006, Madison, WI, USA in.
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
November 19, 2005 Sergio Palomares-Ruiz Physics of Atmospheric Neutrinos: Perspectives for the Future Topical Workshop on Physics at Henderson DUSEL Fort.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Upper Bound on the Dark Matter Annihilation Cross Section Gregory Mack CCAPP/The Ohio State University.
Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to CP Violation Yoshio Sato (Saitama University/Technical University.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
November 17, 2008Carsten Rott - Novel Searches for Dark Matter 1 Novel Searches for Dark Matter with Neutrino Telescopes November 17 – 19, 2008.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Luminous Dark Matter Brian Feldstein arXiv: B.F., P. Graham and S. Rajendran.
Sergio Palomares-Ruiz April 14, 2008 Testing Dark Matter with neutrino detectors MPI, Heidelberg (Germany) April 14, 2008.
CTA and Cosmic-ray Physics Toru Shibata Aoyama-Gakuin University (26/Sep/2012) (1)
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
High-energy electrons, pulsars, and dark matter Martin Pohl.
Singlet Dark Matter, Type II Seesaw and Cosmic Ray Signals Nobuchika Okada Miami Fort Fauderdale, Dec , 2009 University of Alabama, Tuscaloosa.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Overview of indirect dark matter detection Jae Ho HEO Theoretical High Energy group Yonsei University 2012 Jindo Workshop, Sep
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
Reionizing the Universe with Dark Matter : constraints on self-annihilation cross sections Fabio Iocco Marie Curie fellow at Institut d’Astrophysique de.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
Weihai, July 8-12 New Physics from the Sky 朱守华, Shou-Hua Zhu ITP, Peking University In collaboration with Xiao-Jun Bi, Jia Liu, Peng-Fei Yin and Qiang.
Particle Velocity Effects in the Anisotropy of Extragalactic Diffuse Gamma-rays from Dark Matter Annihilation Sheldon Campbell, Texas A&M University Continuation.
Measurement of J/  -> e + e - and  C -> J/  +   in dAu collisions at PHENIX/RHIC A. Lebedev, ISU 1 Fall 2003 DNP Meeting Alexandre Lebedev, Iowa State.
Collider searchIndirect Detection Direct Detection.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Study of the Atmospheric Muon and Neutrinos for the IceCube Observatory Ryan Birdsall Paolo Desiati, Patrick Berghaus,
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Sergio Palomares-Ruiz June 4, 2008 Testing Dark Matter with neutrino detectors Melbourne Neutrino Theory Workshop Melbourne (Australia) June 2-4, 2008.
Indirect detection of Dark Matter with the ANTARES Neutrino Telescope Miguel Ardid on behalf of the ANTARES Collaboration Rome – September 2015.
Yu-Feng Zhou KITPC/ITP-CAS
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The Gamma-Neutrino Connection in Transparent Sources – the Observational Side Alexander Kappes University Wisconsin-Madison Workshop on Non-Thermal Hadronic.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
A maximum likelihood analysis of the CoGeNT public dataset Chris Kelso University of Utah Astroparticle Physics 2014 June 25, 2014 Work in progress with:
Search for dark-sector Higgs and gauge bosons at B A B AR Adrian Bevan 1July 2012 h'h' A'A' χ A0A0.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Keegan Stoner Columbia High School. dark matter Obeying Inverse Square Law Outer stars orbit too fast what we should seewhat we actually see.
The physics of Mu2e Bertrand Echenard California Institute of Technology Mu2e computing review doc-db XXXXX.
Recent developments in Dark Matter Malcolm Fairbairn.
Roma International Conference on Astroparticle Physics Rome, May 2013 Juan de Dios Zornoza (IFIC – Valencia) in collaboration with G. Lambard (IFIC) on.
Sergio Palomares-Ruiz June 30, 2008 Intermediate γ β-beam neutrino experiment with long baseline NuFact08 Valencia (Spain) June 30-July 5, 2008 See Christopher.
Topics on Dark Matter Annihilation
Jonathan Davis King’s College London
An interesting candidate?
Andrea Chiavassa Universita` degli Studi di Torino
Sterile Neutrinos and WDM
Neutrino astronomy Measuring the Sun’s Core
Can dark matter annihilation account for the cosmic e+- excesses?
Implications of new physics from cosmic e+- excesses
08/27/04 Strategies for the search for prompt muons in the downgoing
SOLAR ATMOSPHERE NEUTRINOS
Probing the Broken - Symmetry with Neutrino Telescopes
Dark Matter Limits From The Galactic Halo With H.E.S.S.
J-F. Glicenstein, P.Brun, E.Moulin (IRFU-Saclay)
DARK PHOTONS FROM THE SUN
Presentation transcript:

Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA) November 17-19, 2008

Sergio Palomares-Ruiz November 17, 2008 What do we know about Dark Matter? Astrophysicist view: Particle Physicist view:

Sergio Palomares-Ruiz November 17, 2008

Sergio Palomares-Ruiz November 17, 2008 Model-independent bound Neutrinos are the least detectable particles of the SM From the detection point of view the most conservative assumption (the worst case) is that DM annihilates (decays) only into ν’s: Â Â → νν ( Â → νν) This is not an assumption about realistic models It provides a bound on the total annihilation cross section (lifetime) and not on the partial cross section (lifetime) to neutrinos Anything else would produce photons, and hence would lead to a stronger limit J. F. Beacom, N. F. Bell and G. D. Mack, Phys. Rev. Lett. 99:231301, 2007

Sergio Palomares-Ruiz November 17, 2008 Two energy regions: backgrounds Strategy Calculate neutrino flux Compare potential signal with the background E ~ 100 MeV – 100 TeV: atmospheric neutrino flux E ~ 10 MeV – 100 MeV: invisible muons and atmospheric neutrino flux

Sergio Palomares-Ruiz November 17, 2008 Signal from Annihilations Experiment Particle PhysicsAstrophysics

Sergio Palomares-Ruiz November 17, 2008 Field of View Neutrino Spectrum: Flavor democracy Average of the Line of Sight Integration of ½ 2

Sergio Palomares-Ruiz November 17, 2008 Signal from Decays Experiment Particle PhysicsAstrophysics

Sergio Palomares-Ruiz November 17, 2008 Field of View Neutrino Spectrum: Flavor democracy Average of the Line of Sight Integration of ρ

Sergio Palomares-Ruiz November 17, 2008 Annihilations vs Decays 2 DM particles E = m  Proportional to /m  2 Proportional to ½ 2 1 DM particle E = m  /2 Proportional to 1/ ¿  m  Proportional to ½

Sergio Palomares-Ruiz November 17, 2008 DM Density Profile Uncertainties SPR and S. Pascoli, Phys. Rev. D77:025025, 2008 Local rotational velocity Amount of flatness Non-halo components P. Belli et al., Phys.Rev.D 66:043503, 2002 From the allowed range of: Annihilations: Decays: Extreme values for the 3 profiles: J avg = (1.3, 8.1) SPR, Phys. Lett. B665:50, 2008

Sergio Palomares-Ruiz November 17, 2008 Energy resolution: ¢ log E = 0.3 H. Yüksel, S. Horiuchi, J. F. Beacom and S. Ando, Phys. Rev. D76:123506, 2007 Other related limits M. Kachelriess and P. D. Serpico, Phys. Rev. D76:063516, 2007 N. F. Bell, J. B. Dent, T. D. Jacques and T. J. Weiler, Phys. Rev. D78:083540, 2008 J. B. Dent, R. J. Scherrer and T. J. Weiler, arXiv: G. D. Mack, T. D. Jacques, J. F. Beacom, N. F. Bell and H. Yüksel, Phys. Rev. D78:063542, 2008

Sergio Palomares-Ruiz November 17, 2008 Can we do better? Careful treatment of energy resolution and backgrounds: eg. limits on MeV DM We use SK data for E = MeV Detection: ν e + p → e + + n Two main backgrounds: –Invisible muons –Atmospheric neutrinos M. S. Malek, Ph.D thesis M. S. Malek et al., Phys. Rev. Lett. 90:061101, 2003

Sergio Palomares-Ruiz November 17, 2008 Analysis 16 4-MeV bins in the range [18,82] MeV N l = Number of events in bin l A l = fraction of signal events B l = fraction of Michel electrons (positrons) C l = fraction of atmospheric electron (anti)neutrinos

Sergio Palomares-Ruiz November 17, 2008 We perform a similar  2 analysis as that done by SK to limit the flux of DSNB and we set an upper bound on the DM annihilation cross section SPR and S. Pascoli, Phys. Rev. D77:025025, 2008SPR, arXiv: Annihilations:

Sergio Palomares-Ruiz November 17, 2008 LENA: m 3 scintillator after 10 years Reactor BGDSNBAtmospheric BG SPR and S. Pascoli, Phys. Rev. D77:025025, 2008 What if this is actually the case and DM only annihilates into neutrinos? C. Boehm, Y. Farzan, T. Hambye, SPR and S. Pascoli, Phys. Rev. D 77:043516, 2008

Sergio Palomares-Ruiz November 17, 2008 SPR, Phys. Lett. B665:50, 2008 Model-independent bound from CMB observations K. Ichiki, M. Oguri and K. Takahashi, Phys. Rev. Lett. 93:071302, 2004 Using SK data from DSNB search: Detailed analysis of background and energy resolution New model-independent bound from CMB and SN observations Y. Gong and X. Chen, Phys. Rev. D77:103511, 2008 Decays: For γ-line limits: H. Yuksel and M. Kistler, Phys. Rev. D78:023502, 2008

Sergio Palomares-Ruiz November 17, 2008 A few words on PAMELA O. Adriani et al., arXiv: O. Adriani et al., arXiv: Annihilations: need of large boost factors Sub-structure Sommerfeld enhancement Non-thermal production Decays: no need of boost factors -> “short” lifetime M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, arXiv:

Sergio Palomares-Ruiz November 17, 2008 Conclusions Neutrino detectors can test DM properties Searches for neutrinos from DM annihilations/decays in the galactic halo could constitute powerful probes of DM properties Neutrino detectors can set model- independent bounds on the DM annihilation cross section and on the DM lifetime Difficult to distinguish annihilation/decay scenarios: use angular information Future detectors (LENA) might be able to detect a signal from DM annihilations/decay

Sergio Palomares-Ruiz November 17, 2008 When you have eliminated all which is impossible, then whatever remains, however improbable, must be the truth Sherlock Holmes The world is full of obvious things which nobody by any chance ever observes Long arm looking for a fingerprint trying to find the mystery clue Bon Scott