©Silberschatz, Korth and Sudarshan16.1Database System Concepts 3 rd Edition Chapter 16: Concurrency Control Lock-Based Protocols Timestamp-Based Protocols.

Slides:



Advertisements
Similar presentations
Database System Concepts 5 th Ed. © Silberschatz, Korth and Sudarshan, 2005 See for conditions on re-usewww.db-book.com Chapter 16 : Concurrency.
Advertisements

CM20145 Concurrency Control
©Silberschatz, Korth and Sudarshan16.1Database System Concepts 3 rd Edition Chapter 16: Concurrency Control Lock-Based Protocols Timestamp-Based Protocols.
Database Systems (資料庫系統)
Concurrency Control WXES 2103 Database. Content Concurrency Problems Concurrency Control Concurrency Control Approaches.
Concurrency Control Amol Deshpande CMSC424. Approach, Assumptions etc.. Approach  Guarantee conflict-serializability by allowing certain types of concurrency.
Concurrency Control.
Lecture 11 Recoverability. 2 Serializability identifies schedules that maintain database consistency, assuming no transaction fails. Could also examine.
CS 728 Advanced Database Systems Chapter 21 Introduction to Protocols for Concurrency Control in Databases.
Chapter 6 Process Synchronization: Part 2. Problems with Semaphores Correct use of semaphore operations may not be easy: –Suppose semaphore variable called.
Quick Review of Apr 29 material
Chapter 16 : Concurrency Control Chapter 16: Concurrency Control agreement, accordance of opinion; cooperation, shared effort; simultaneous occurrence.
©Silberschatz, Korth and Sudarshan16.1Database System Concepts 3 rd Edition Chapter 16: Concurrency Control Lock-Based Protocols Timestamp-Based Protocols.
Database System Concepts 5 th Ed. © Silberschatz, Korth and Sudarshan, 2005 See for conditions on re-usewww.db-book.com Concurrency Control.
©Silberschatz, Korth and Sudarshan16.1Database System Concepts 3 rd Edition Chapter 16: Concurrency Control Lock-Based Protocols Timestamp-Based Protocols.
Concurrency Control. General Overview Relational model - SQL  Formal & commercial query languages Functional Dependencies Normalization Transaction Processing.
Transactions Transaction Concept Transaction State
15.1Database System Concepts - 6 th Edition Chapter 15: Concurrency Control Lock-Based Protocols The Two-Phase Locking Protocol Graph-Based Protocols #Deadlock.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 15 : Concurrency.
| Website for Students | VTU NOTES | Question Papers
Concurrency Control.
DATABASE MANAGEMENT SYSTEMS. INDEX UNIT-6 PPT SLIDES S.NO Module as per Lecture PPT Session planner No Slide NO
PMIT-6102 Advanced Database Systems
©Silberschatz, Korth and Sudarshan14.1Database System Concepts - 6 th Edition UNIT 5 :Transactions Transaction concepts, properties of transactions, serializability.
V. Megalooikonomou Concurrency control (based on slides by C. Faloutsos at CMU and on notes by Silberchatz,Korth, and Sudarshan) Temple University – CIS.
Concurrency Control Lectured by, Jesmin Akhter, Assistant professor, IIT, JU.
Chapter 11 Concurrency Control. Lock-Based Protocols  A lock is a mechanism to control concurrent access to a data item  Data items can be locked in.
CONCURRENCY CONTROL (CHAPTER 16) CONCURRENCY CONTROL INTRODUCTION Motivation: A dbms is multiprogrammed to increase the utilization.
Concurrency control. Lock-based protocols One way to ensure serializability is to require the data items be accessed in a mutually exclusive manner One.
Chapter 15 Concurrency Control Yonsei University 1 st Semester, 2015 Sanghyun Park.
Concurrency Control Concurrency Control By Dr.S.Sridhar, Ph.D.(JNUD), RACI(Paris, NICE), RMR(USA), RZFM(Germany) DIRECTOR ARUNAI ENGINEERING COLLEGE TIRUVANNAMALAI.
Concurrency Control in Database Operating Systems.
Database Techniek Lecture 5: Concurrency Control (Chapter 14/16)
File Processing : Transaction Management 2015, Spring Pusan National University Ki-Joune Li.
7c.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Module 7c: Atomicity Atomic Transactions Log-based Recovery Checkpoints Concurrent.
Computing & Information Sciences Kansas State University Wednesday, 14 Nov 2007CIS 560: Database System Concepts Lecture 34 of 42 Wednesday, 14 November.
CSIS 7102 Spring 2004 Lecture 3 : Two-phase locking Dr. King-Ip Lin.
Concurrency Control Introduction Lock-Based Protocols
1 Concurrency control lock-base protocols timestamp-based protocols validation-based protocols Ioan Despi.
Database System Concepts 5 th Ed. © Silberschatz, Korth and Sudarshan, 2005 See for conditions on re-usewww.db-book.com Chapter 16 : Concurrency.
Database System Concepts 5 th Ed. © Silberschatz, Korth and Sudarshan, 2005 See for conditions on re-usewww.db-book.com Chapter 16 : Concurrency.
Lecture 8- Concurrency Control Advanced Databases Masood Niazi Torshiz Islamic Azad university- Mashhad Branch
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 15 : Concurrency.
Chapter 8 Concurrency Control 8.1 Lock-Based Protocols 8.2 Multiple Granularity 8.3 Deadlock Handling 8.4 Insert and Delete Operations.
1 Chapter 17: Concurrency Control. 2 Lock-Based Protocols Timestamp-Based Protocols Validation-Based Protocols Multiple Granularity Multiversion Schemes.
Timestamp-based Concurrency Control
Lecture 9- Concurrency Control (continued) Advanced Databases Masood Niazi Torshiz Islamic Azad University- Mashhad Branch
Em Spatiotemporal Database Laboratory Pusan National University File Processing : Concurrency Control 2004, Spring Pusan National University Ki-Joune Li.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 15 : Concurrency.
Concurrency Control.
Part- A Transaction Management
Chapter 7: Concurrency Control
Chapter 16: Concurrency Control
Chapter 16: Concurrency Control
Chapter 16: Concurrency Control
Chapter 16: Concurrency Control
Chapter 16: Concurrency Control
Chapter 15 : Concurrency Control
Database System Implementation CSE 507
Chapter 16: Concurrency Control
Database System Implementation CSE 507
Concurrency Control.
Chapter 16: Concurrency Control
Concurrency Control WXES 2103 Database.
Chapter 15 : Concurrency Control
Module 16 : Concurrency Control
Chapter 16: Concurrency Control
Temple University – CIS Dept. CIS661 – Principles of Data Management
CONCURRENCY Concurrency is the tendency for different tasks to happen at the same time in a system ( mostly interacting with each other ) .   Parallel.
Chapter 16 : Concurrency Control
Presentation transcript:

©Silberschatz, Korth and Sudarshan16.1Database System Concepts 3 rd Edition Chapter 16: Concurrency Control Lock-Based Protocols Timestamp-Based Protocols Validation-Based Protocols Multiple Granularity Multiversion Schemes Deadlock Handling Insert and Delete Operations

©Silberschatz, Korth and Sudarshan16.2Database System Concepts 3 rd Edition Lock-Based Protocols A lock is a mechanism to control concurrent access to a data item Data items can be locked in two modes : 1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using lock-X instruction. 2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction. Lock requests are made to concurrency-control manager. Transaction can proceed only after request is granted.

©Silberschatz, Korth and Sudarshan16.3Database System Concepts 3 rd Edition Lock-Based Protocols (Cont.) Lock-compatibility matrix A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions Any number of transactions can hold shared locks on an item, but if any transaction holds an exclusive on the item no other transaction may hold any lock on the item. If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.

©Silberschatz, Korth and Sudarshan16.4Database System Concepts 3 rd Edition Lock-Based Protocols (Cont.) Example of a transaction performing locking: T 2 : lock-S(A); read (A); unlock(A); lock-S(B); read (B); unlock(B); display(A+B) Locking as above is not sufficient to guarantee serializability — if A and B get updated in-between the read of A and B, the displayed sum would be wrong. A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking protocols restrict the set of possible schedules.

©Silberschatz, Korth and Sudarshan16.5Database System Concepts 3 rd Edition Pitfalls of Lock-Based Protocols Consider the partial schedule Neither T 3 nor T 4 can make progress — executing lock-S(B) causes T 4 to wait for T 3 to release its lock on B, while executing lock-X(A) causes T 3 to wait for T 4 to release its lock on A. Such a situation is called a deadlock.  To handle a deadlock one of T 3 or T 4 must be rolled back and its locks released.

©Silberschatz, Korth and Sudarshan16.6Database System Concepts 3 rd Edition Pitfalls of Lock-Based Protocols (Cont.) The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil. Starvation is also possible if concurrency control manager is badly designed. For example:  A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.  The same transaction is repeatedly rolled back due to deadlocks. Concurrency control manager can be designed to prevent starvation.

©Silberschatz, Korth and Sudarshan16.7Database System Concepts 3 rd Edition The Two-Phase Locking Protocol This is a protocol which ensures conflict-serializable schedules. Phase 1: Growing Phase  transaction may obtain locks  transaction may not release locks Phase 2: Shrinking Phase  transaction may release locks  transaction may not obtain locks The protocol assures serializability. It can be proved that the transactions can be serialized in the order of their lock points (i.e. the point where a transaction acquired its final lock).

©Silberschatz, Korth and Sudarshan16.8Database System Concepts 3 rd Edition The Two-Phase Locking Protocol (Cont.) Two-phase locking does not ensure freedom from deadlocks Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts. Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this protocol transactions can be serialized in the order in which they commit.

©Silberschatz, Korth and Sudarshan16.9Database System Concepts 3 rd Edition The Two-Phase Locking Protocol (Cont.) There can be conflict serializable schedules that cannot be obtained if two-phase locking is used. However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for conflict serializability in the following sense: Given a transaction T i that does not follow two-phase locking, we can find a transaction T j that uses two-phase locking, and a schedule for T i and T j that is not conflict serializable.

©Silberschatz, Korth and Sudarshan16.10Database System Concepts 3 rd Edition Lock Conversions Two-phase locking with lock conversions: – First Phase:  can acquire a lock-S on item  can acquire a lock-X on item  can convert a lock-S to a lock-X (upgrade) – Second Phase:  can release a lock-S  can release a lock-X  can convert a lock-X to a lock-S (downgrade) This protocol assures serializability. But still relies on the programmer to insert the various locking instructions.

©Silberschatz, Korth and Sudarshan16.11Database System Concepts 3 rd Edition Automatic Acquisition of Locks A transaction T i issues the standard read/write instruction, without explicit locking calls. The operation read(D) is processed as: if T i has a lock on D then read(D) else begin if necessary wait until no other transaction has a lock-X on D grant T i a lock-S on D; read(D) end

©Silberschatz, Korth and Sudarshan16.12Database System Concepts 3 rd Edition Automatic Acquisition of Locks (Cont.) write(D) is processed as: if T i has a lock-X on D then write(D) else begin if necessary wait until no other trans. has any lock on D, if T i has a lock-S on D then upgrade lock on D to lock-X else grant T i a lock-X on D write(D) end; All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan16.13Database System Concepts 3 rd Edition Graph-Based Protocols Graph-based protocols are an alternative to two-phase locking Impose a partial ordering  on the set D = {d 1, d 2,..., d h } of all data items.  If d i  d j then any transaction accessing both d i and d j must access d i before accessing d j.  Implies that the set D may now be viewed as a directed acyclic graph, called a database graph. The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan16.14Database System Concepts 3 rd Edition Tree Protocol Only exclusive locks are allowed. The first lock by T i may be on any data item. Subsequently, a data Q can be locked by T i only if the parent of Q is currently locked by T i. Data items may be unlocked at any time.

©Silberschatz, Korth and Sudarshan16.15Database System Concepts 3 rd Edition Serializable Schedule Under the Tree Protocol

©Silberschatz, Korth and Sudarshan16.16Database System Concepts 3 rd Edition Graph-Based Protocols (Cont.) The tree protocol ensures conflict serializability as well as freedom from deadlock. Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking protocol.  shorter waiting times, and increase in concurrency  protocol is deadlock-free, no rollbacks are required  the abort of a transaction can still lead to cascading rollbacks. (this correction has to be made in the book also.) However, in the tree-locking protocol, a transaction may have to lock data items that it does not access.  increased locking overhead, and additional waiting time  potential decrease in concurrency Schedules not possible under two-phase locking are possible under tree protocol, and vice versa.

©Silberschatz, Korth and Sudarshan16.17Database System Concepts 3 rd Edition Timestamp-Based Protocols Each transaction is issued a timestamp when it enters the system. If an old transaction T i has time-stamp TS(T i ), a new transaction T j is assigned time-stamp TS(T j ) such that TS(T i ) <TS(T j ). The protocol manages concurrent execution such that the time- stamps determine the serializability order. In order to assure such behavior, the protocol maintains for each data Q two timestamp values:  W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.  R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

©Silberschatz, Korth and Sudarshan16.18Database System Concepts 3 rd Edition Timestamp-Based Protocols (Cont.) The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order. Suppose a transaction T i issues a read(Q) 1. If TS(T i )  W-timestamp(Q), then T i needs to read a value of Q that was already overwritten. Hence, the read operation is rejected, and T i is rolled back. 2. If TS(T i )  W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to the maximum of R- timestamp(Q) and TS(T i ).

©Silberschatz, Korth and Sudarshan16.19Database System Concepts 3 rd Edition Timestamp-Based Protocols (Cont.) Suppose that transaction T i issues write(Q). 1. If TS(T i ) < R-timestamp(Q), then the value of Q that T i is producing was needed previously, and the system assumed that that value would never be produced. Hence, the write operation is rejected, and T i is rolled back. 2. If TS(T i ) < W-timestamp(Q), then T i is attempting to write an obsolete value of Q. Hence, this write operation is rejected, and T i is rolled back. 3. Otherwise, the write operation is executed, and W- timestamp(Q) is set to TS(T i ).

©Silberschatz, Korth and Sudarshan16.20Database System Concepts 3 rd Edition Schedule 3

©Silberschatz, Korth and Sudarshan16.21Database System Concepts 3 rd Edition Correctness of Timestamp-Ordering Protocol The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form: Thus, there will be no cycles in the precedence graph Timestamp protocol ensures freedom from deadlock as no transaction ever waits. But the schedule may not be cascade-free, and may not even be recoverable. transaction with smaller timestamp transaction with larger timestamp

©Silberschatz, Korth and Sudarshan16.22Database System Concepts 3 rd Edition Recoverability and Cascade Freedom Problem with timestamp-ordering protocol:  Suppose T i aborts, but T j has read a data item written by T i  Then T j must abort; if T j had been allowed to commit earlier, the schedule is not recoverable.  Further, any transaction that has read a data item written by T j must abort  This can lead to cascading rollback --- that is, a chain of rollbacks Solution:  A transaction is structured such that its writes are all performed at the end of its processing  All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written  A transaction that aborts is restarted with a new timestamp

©Silberschatz, Korth and Sudarshan16.23Database System Concepts 3 rd Edition Thomas’ Write Rule Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances. No further details will be discussed.

End of Chapter