State and Parameter Estimation for a Coupled Ocean-Atmosphere Model Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles.

Slides:



Advertisements
Similar presentations
Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Advertisements

P2.1 ENSEMBLE DATA ASSIMILATION: EXPERIMENTS USING NASA’S GEOS COLUMN PRECIPITATION MODEL D. Zupanski 1, A. Y. Hou 2, S. Zhang 2, M. Zupanski 1, C. D.
Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado Model Error and Parameter Estimation Joint NCAR/MMM CSU/CIRA Data Assimilation Workshop.
1B.17 ASSESSING THE IMPACT OF OBSERVATIONS AND MODEL ERRORS IN THE ENSEMBLE DATA ASSIMILATION FRAMEWORK D. Zupanski 1, A. Y. Hou 2, S. Zhang 2, M. Zupanski.
Role of Air-Sea Interaction on the Predictability of Tropical Intraseasonal Oscillation (TISO) Xiouhua Fu International Pacific Research Center (IPRC)
Application of the ARGO and TAO data in improving the subsurface entrainment temperature parameterization for the Zebiak-Cane Ocean model Yonghong Yin*
Incorporation of dynamic balance in data assimilation and application to coastal ocean Zhijin Li and Kayo Ide SAMSI, Oct. 5, 2005,
Weather Noise Forcing of Low Frequency Variability in the North Atlantic Edwin K. Schneider COLA SAC Meeting April 2010.
Low-frequency variability in the mid-latitude atmosphere induced by an oceanic thermal front: Application to the North Atlantic Ocean Yizhak Feliks 1,2.
Motivation The Carolinas has had a tremendous residential and commercial investment in coastal areas during the past 10 years. However rapid development.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
Some template text and images for presentations on the Advanced Data Assimilation Methods project Bethan Harris Assimila Ltd.
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric.
GAII.05 8 July 2003 Data Assimilation Methods for Characterizing Radiation Belt Dynamics E.J. Rigler 1, D.N. Baker 1, D. Vassiliadis 2, R.S. Weigel 1 (1)
Data Assimilation in Meteorology and Oceanography Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles Joint work with.
Dynamical Systems, Sequential Estimation, and Estimating Parameters Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles.
Nonlinear Mechanisms of Interdecadal Climate Modes: Atmospheric and Oceanic Observations, and Coupled Models Michael Ghil Ecole Normale Supérieure, Paris,
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Dynamical Systems Tools for Ocean Studies: Chaotic Advection versus Turbulence Reza Malek-Madani.
Knowing (i) the solution of system (1) for the given initial vector on the entire interval ; (ii) the observed variables ; and (iii) the value of the random.
UCLA-LANL Reanalysis Project Yuri Shprits 1 Collaborators: Binbin Ni 1, Dmitri Kondrashov 1, Yue Chen 2, Josef Koller 2,
Coupled GCM The Challenges of linking the atmosphere and ocean circulation.
Lecture 11: Kalman Filters CS 344R: Robotics Benjamin Kuipers.
Ensemble Data Assimilation and Uncertainty Quantification Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager National.
Towards Improving Coupled Climate Model Using EnKF Parameter Optimization Towards Improving Coupled Climate Model Using EnKF Parameter Optimization Zhengyu.
The Importance of Atmospheric Variability for Data Requirements, Data Assimilation, Forecast Errors, OSSEs and Verification Rod Frehlich and Robert Sharman.
CSDA Conference, Limassol, 2005 University of Medicine and Pharmacy “Gr. T. Popa” Iasi Department of Mathematics and Informatics Gabriel Dimitriu University.
MPO 674 Lecture 20 3/26/15. 3d-Var vs 4d-Var.
Linear Inverse Modeling with an SVD treatment (at least the extent that I’ve learned thus far) Eleanor Middlemas.
I Reanalysis of the Radiation Belt Fluxes Using CRRES and Akebono Satellites. II What can we Learn From Reanalysis. Yuri Shprits 1, Binbin Ni 1, Yue Chen.
Munehiko Yamaguchi 1 1. Rosenstiel School of Marine and Atmospheric Science, University of Miami MPO672 ENSO Dynamics, Prediction and Predictability by.
Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision Luke K. Wang, Shan-Chih Hsieh, Eden C.-W. Hsueh 1 Fei-Bin Hsaio.
The General Data Assimilation Problem Ronald Errico Goddard Earth Sciences Technology and Research Center at Morgan State University and Global Modeling.
In collaboration with: J. S. Allen, G. D. Egbert, R. N. Miller and COAST investigators P. M. Kosro, M. D. Levine, T. Boyd, J. A. Barth, J. Moum, et al.
Multiscale ensemble filtering, with replicates conditioned on satellite cloud observations, is both realistic and efficient 2) Multiscale Data Assimilation.
Improved ensemble-mean forecast skills of ENSO events by a zero-mean stochastic model-error model of an intermediate coupled model Jiang Zhu and Fei Zheng.
Dusanka Zupanski And Scott Denning Colorado State University Fort Collins, CO CMDL Workshop on Modeling and Data Analysis of Atmospheric CO.
Meteorology 485 Long Range Forecasting Friday, January 23, 2004.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 18: Minimum Variance Estimator.
2004 SIAM Annual Meeting Minisymposium on Data Assimilation and Predictability for Atmospheric and Oceanographic Modeling July 15, 2004, Portland, Oregon.
Sophie RICCI CALTECH/JPL Post-doc Advisor : Ichiro Fukumori The diabatic errors in the formulation of the data assimilation Kalman Filter/Smoother system.
Applications of optimal control and EnKF to Flow Simulation and Modeling Florida State University, February, 2005, Tallahassee, Florida The Maximum.
MODEL ERROR ESTIMATION EMPLOYING DATA ASSIMILATION METHODOLOGIES Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
Michael J. McPhaden, NOAA/PMEL Dongxiao Zhang, University of Washington and NOAA/PMEL Circulation Changes Linked to ENSO- like Pacific Decadal Variability.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.
Data Assimilation With VERB Code
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
Hou/JTST NASA GEOS-3/TRMM Re-Analysis: Capturing Observed Rainfall Variability in Global Analysis Arthur Hou NASA Goddard Space Flight Center 2.
“Why Ocean Circulation Observations are Important for Climate Studies” Peter Niiler Scripps Institution of Oceanography.
Prepared by Dusanka Zupanski and …… Maximum Likelihood Ensemble Filter: application to carbon problems.
Colloque national – Assimilation des données : Conclusions générales et perspectives Michael Ghil Ecole Normale Supérieure, Paris, et University of California,
Data assimilation applied to simple hydrodynamic cases in MATLAB
Cameron Rowe.  Introduction  Purpose  Implementation  Simple Example Problem  Extended Kalman Filters  Conclusion  Real World Examples.
1 A multi-scale three-dimensional variational data assimilation scheme Zhijin Li,, Yi Chao (JPL) James C. McWilliams (UCLA), Kayo Ide (UMD) The 8th International.
Observations and Ocean State Estimation: Impact, Sensitivity and Predictability Andy Moore University of California Santa Cruz Hernan Arango Rutgers University.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
An Empirical Model of Decadal ENSO Variability Sergey Kravtsov University of Wisconsin-Milwaukee Department of Mathematical Sciences Atmospheric Science.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
The Ensemble Kalman filter
Towards the utilization of GHRSST data for improving estimates of the global ocean circulation Dimitris Menemenlis 1, Hong Zhang 1, Gael Forget 2, Patrick.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
H.L. Tanaka and K. Kondo University of Tsukuba
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
To infinity and Beyond El Niño Dietmar Dommenget.
Sarah Dance DARC/University of Reading
Presentation transcript:

State and Parameter Estimation for a Coupled Ocean-Atmosphere Model Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles Dmitri Kondrashov Atmospheric & Oceanic Sciences Dept. & IGPP University of California, Los Angeles, and Chaojiao Sun NASA Goddard Space Flight Center, and Goddard Earth Sciences & Technology Center, UMBC Geenbelt, MD AGU Fall Mtg. 10–15 Dec. 2006, San Francisco

Parameter Estimation a) Dynamical model (continuous time) dx/dt = M(x,  ) +  (t) y o = H(x) +  (t) Simple (EKF) idea – augmented state vector d  /dt = 0, X = (x T,  T ) T b) Statistical model L(  )  = w(t), L – AR(MA) model,  = (  1,  2, ….  M ) Examples: 1) Dee et al. (IEEE, 1985) – estimate a few parameters in the covariance matrix Q = E( ,  T ); also the bias = E . 2) POPs – Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D); Penland & Ghil (1993, MWR) – estimate L and Q entirely from data, linear. 3) dx/dt = M(x,  ) +  : estimate both M & Q from data (Dee, 1995, QJRMS); nonlinear approach – empirical mode reduction (EMR: Kravtsov et al., 2005; Kondrashov et al., 2005, 2006).

Extended Kalman Filter (EKF)

Sequential parameter estimation “State augmentation” method – uncertain parameters are treated as additional state variables. Example – one unknown parameter , discrete time: The parameters are not directly observable, but the cross-covariances drive parameter changes from innovations of the state: Parameter estimation is always a nonlinear problem, even if the model is linear in terms of the model state: use Extended Kalman Filter (EKF).

Parameter estimation for coupled O-A system Intermediate coupled model (ICM: Jin & Neelin, JAS, 1993) Estimate the state vector W = (T’, h, u, v), along with the coupling parameter  and surface-layer coefficient  s by assimilating data from a single meridional section. The ICM model has errors in its initial state, in the wind stress forcing, & in the parameters. Hao & Ghil (1995, Proc. WMO Symp. DA Tokyo); Ghil (1997, JMSJ); Sun et al. (2002, MWR). Current work with D. Kondrashov, J.D. Neelin (UCLA), & C.-j. Sun + I. Fukumori (JPL). Forecast using wrong  Reference solution Assimilation result Forecast using wrong  and  s Reference solution Assimilation result

Coupled O-A Model (ICM) vs. Observations

Convergence of Parameter Values – I Identical-twin experiments

Convergence of Parameter Values – II SST anomaly data from reanalysis

EKF results with and w/o parameter estimation

Summary & future work Sequential estimation (EKF, etc.) of model (& noise) parameters is possible. The state augmentation method is conceptually simple: it uses state observations only to estimate model parameters, too. Including parameter estimation improves the state estimation, given the same observing system. Identical-twin experiments in an ICM of tropical ocean-atmosphere variability exhibit convergence of the parameters within a few years; this convergence depends on the initial error in the parameters, but not on the model or observational errors. When using NCEP-NCAR reanalysis data of SST anomalies, parameter estimation is successful, too. In this case, the estimated parameter values undergo large shifts at the two major ENSO events of and : these correspond to shifts in the ICM’s regimes (westward-propagating vs. delayed-oscillator). Collaboration with the JPL (I. Fukumori) and GFDL-Princeton (G. Philander & A. Rosati) teams aims at implementing these parameter-estimation ideas in a fully coupled O-A GCM.

Computational advances a) Hardware - more computing power (CPU throughput) - larger & faster memory (3-tier) b) Software - better numerical implementations of algorithms - automatic adjoints - block-banded, reduced-rank, & other sparse-matrix algorithms - better ensemble filters - efficient parallelization, …. How much DA vs. forecast? - Design integrated observing–forecast–assimilation systems!

Observing system design  Need no more (independent) observations than d-o-f to be tracked: - “features” (Ide & Ghil, 1997a, b, DAO); - instabilities (Todling & Ghil, Ghil & Todling, 1996, MWR); - trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993).  The cost of advanced DA is much less than that of instruments & platforms: - at best use DA instead of instruments & platforms. - at worst use DA to determine which instruments & platforms (advanced OSSE)  Use any observations, if forward modeling is possible (observing operator H) - satellite images, 4-D observations; - pattern recognition in observations and in phase-space statistics.

General references Bengtsson, L., M. Ghil and E. Källén (Eds.), Dynamic Meteorology: Data Assimilation Methods, Springer-Verlag, 330 pp. Daley, R., Atmospheric Data Analysis. Cambridge Univ. Press, Cambridge, U.K., 460 pp. Ghil, M., and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141–266. Bennett, A. F., Inverse Methods in Physical Oceanography. Cambridge Univ. Press, 346 pp. Malanotte-Rizzoli, P. (Ed.), Modern Approaches to Data Assimilation in Ocean Modeling. Elsevier, Amsterdam, 455 pp. Wunsch, C., The Ocean Circulation Inverse Problem. Cambridge Univ. Press, 442 pp. Ghil, M., K. Ide, A. F. Bennett, P. Courtier, M. Kimoto, and N. Sato (Eds.), Data Assimilation in Meteorology and Oceanography: Theory and Practice, Meteorological Society of Japan and Universal Academy Press, Tokyo, 496 pp. Perec, G., 1969: La Disparition, Gallimard,Paris.